
Thank you for choosing Red Lion Controls’ Paradigm family
of operator interfaces. Included with this manual is a copy of

EDICT-97. This intuitive based programming software can
be used to program the entire line of Paradigm products
available from Red Lion Controls. EDICT-97 has many

features to ensure that you have all the power you need for
your application. These powerful facilities are available to
you with unrivaled ease-of-use.

Red Lion Controls Inc

20 Willow Springs Circle, York, PA 17402

Tel +1 (717) 767-6511 Fax: +1 (717) 764-6587

Red Lion UK Ltd

Tapton Park, Chesterfield, Derbyshire S41 OTZ

Tel +44 (1246) 22 21 22 Fax: +44 (1246) 22 12 22

Red Lion Controls France

56 Boulevard du Courcerin Batiment 21, ZI Pariest

F-77183 Croissy Beaubourg, France

Tel +33 (64) 80 12 12 Fax: +33 (64) 80 12 13

www.redlion-controls.com

sales@redlion-controls.com

© 2000, RED LION CONTROLS, INC. ALL RIGHTS RESERVED.

Information in this document is subject to change without notice and does not represent a
commitment by Red Lion Controls. Software, which includes any database supplied therewith,
described in this document may be furnished subject to a license agreement or a nondisclosure
agreement. It is against the Law to copy the software except as specifically allowed in the license
or nondisclosure agreement. No part of this document may be reproduced in any form or by any
means, electronic or mechanical, including photocopying and recording, for any purpose, without
the express written permission of Red Lion Controls.

PowerPoint and Windows are registered trademarks of Microsoft Corporation. Other product and
company names mentioned herein may be the trademarks of their respective owners.

Disclaimer

Red Lion Controls, hereinafter referred to as RLC, will under no circumstances be responsible for
direct, indirect, special, incidental or consequential damages, death or personal injury arising from
the use or misuse of all or part of this documentation or the products and software described
herein. Notwithstanding the above, RLC does not exclude any liability for death or personal injury
caused by its negligence.
RLC does not warrant any of its software products to be free from error or to be fit for any
particular purpose. Neither is the software guaranteed to provide operation without interruption.
The customer's sole remedy in case of failure is the refund of the purchase price of the software.
The customer, in applying the products and software described herein, accepts that the products
are wholly or partly programmable electronic systems that are inherently complex and which
cannot thus be guaranteed to be free of errors. In doing so, the customer accepts the
responsibility to ensure that the products are correctly programmed, configured, installed,
commissioned, operated and maintained by competent and suitably trained staff and according to
any instructions or safety instructions provided and as dictated by good engineering practices.
This documentation, and the software and products described herein, is subject to continuous
development and improvement. All information is given in good faith, but RLC shall not be liable
for any omissions or errors herein or within the software herein described.

Contact Details

Red Lion Controls Inc
20 Willow Springs Circle
York
PA 17402
U.S.A.
Tel +1 (717) 767-6511
Fax +1 (717) 764-6587

5

TABLE OF CONTENTS

HARDWARE SPECIFICATIONS .. 5

Power Supply Requirements.. 21

Changing the Battery.. 21

Function Key Strips .. 21

GETTING STARTED .. 23

Installing EDICT-97 ... 23

A Quick Start of EDICT-97 .. 37

THE EDICT-97 DATABASE CONTENTS CATEGORIES 38

Display Pages .. 41

Insert Integer Value... 42

Direct PLC References ... 45

Display Page Properties.. 50

Data Entry Properties.. 52

Using Events and Actions ... 52

Inserting Animation Items ... 56

Bitmaps (Graphic Units Only) .. 64

Character Fonts (Graphic Units Only).. 67

Global Events... 70

SoftKey Menus... 71

Security System ... 73

Comms Ports ... 77

Comms Devices ... 78

Comms Blocks ... 79

Named Data ... 80
Using Named Data For Recipes ... 81

Importing CSV Files .. 84

Alarm Scanner .. 86

Trigger Table ... 89

Schedule Table ... 90

Selection Table ... 91

Message Table .. 93

Data Logger (Graphic Units Only).. 93

Event Logs .. 96

Printed Reports ... 99

User Programs .. 99

Multiple Language Feature .. 100

SECTION A - FUNCTIONS

USING FUNCTIONS.. A1

Index of Functions ... A1

The Compound Statement .. A43

If-Else Statement ... A43

Loop Statements ... A44
The While Loop .. A45

2

The Do-While Loop .. A45

The For Loop .. A45

The Switch Statement ... A46

The Return Statement ... A46

SECTION B - USER PROGRAMS/OPERATORS/SYSTEM VARIABLES

PART 1 - USING PROGRAMS ... B1

Simple Programs ... B1

Complex Programs .. B1

Writing Programs .. B2
Functions .. B2

Statement Types .. B2

The Action Statement ... B2

The Compound Statement ... B2

Using Actions .. B6
Modifying Data ... B6

Modifying Bits ... B6

Using Functions ... B7

Using Expressions ... B7

Comments ... B8

Type Names .. B8

Data Types .. B8
Type Casting .. B9

Key Words ... B9

PART 2 - OPERATORS PAGES .. B11

PART 3 - SYSTEM VARIABLES ... B20

System Variable Index ... B20

System Variable Descriptions ... B21

SECTION C - ERROR CODES

LEXICAL ERROR INDEX ... C1

COMPILER ERROR INDEX ... C5

SECTION D - DRIVER SELECTIONS

COMMUNICATIONS .. D1

Automatic Configuration .. D1

Direct PLC References .. D1

Connecting Your HMI to a PLC ... D1

Accessing a Register in your PLC .. D1

CONNECTING YOUR HMI TO RED LION CONTROLS PRODUCTS D4

TROUBLESHOOTING COMMUNICATIONS ... D7

LED’s ... D7

Comms Errors ... D8

Comms Update ... D8

THE PARADIGM RS485/422 PORT ... D10

3

PARADIGM TO PARADIGM COMMUNICATIONS - PC LINK D11

Configuring a Master .. D11
Using the Wizard .. D11

Manual Configuration ... D11

Configuring the Slaves .. D13
Using the Wizard .. D13

Manual Configuration ... D13

Device Connections for PC Link .. D15
Using RS232 .. D15

Using RS422 .. D15

GENERAL ASCII FRAME.. D17

EDICT-97 COMMUNICATION DRIVERS ... D19

PARADIGM CABLE GUIDE ... D23

SECTION E – GRAPHIC UNITS

THE GRAPHICS ANIMATION TOOLBOX ... E3

INSERTING ANIMATION ITEMS .. E6

PowerPoint-STYLE PAGE TRANSITIONS .. E8

CHOOSING A DISPLAY PAGE COLOR.. E8

ALIGNING ANIMATION ITEMS... E9

GROUPING ANIMATION ITEMS .. E11

USING GROUP PROPERTIES IN MACROS.. E14

INSERTING ANIMATION ITEMS FROM EDICT-97’s LIBRARY.................................. E19
Inserting a Horizontal or Vertical Fill .. E20

Inserting a Rotary Pointer .. E24

THE VERTICAL BAR GRAPH ANIMATION ITEM .. E30

INSERTING LINE GRAPH ANIMATION ITEMS ON A DISPLAY PAGE E34

USING THE DATA LOGGER ... E38

DISPLAYING A TREND ON THE GRAPHICS LAYER OF A DISPLAY PAGE....... E39

THE COLOR SELECTION TABLE... E41

TO LOAD CUSTOM BITMAPS.. E46

ANIMATION ITEMS
Integer Animation Item .. E49
Real Number Animation Item .. E50
Fixed Text Animation Item ... E52
Status Text Animation Item ... E53
Quad Text Animation Item .. E54
Message Text Animation Item ... E56
Decode Text Animation Item ... E58
General Text Animation Item .. E59
Time & Date Animation Item ... E60
The Line Animation Item ... E61
The Frame Animation Item .. E62
The Rectangle Animation Item .. E62
The Shadow Animation Item ... E63
The Wedge Animation Item .. E63
The Circle Animation Item ... E63
The Disk Animation Item ... E64

4

5

Hardware

All keys feature Tactile Feedback

Cable p/n P890301Z See Section D for PLC Cable p/n

User
legendable

Function

Keys

Numeric Keypads
With raise, lower,

Next, etc.

Screen

legendable

Soft Keys

Display Options
Vacuum

Fluorescent or

Backlit LCD

2 X 20, 4 X 20, or

2 X 40
(lines X characters)

 Pictured Below: CX200

 (front panel view)

 CX –200

 (rear panel view)

connection to PC

for programming

24 VDC
Power

RS 232 and RS 485 /422

PLC interface connections

6

� 2 LINE X 20 CHARACTER LIQUID CRYSTAL DISPLAY WITH LED

BACKLIGHT

� 100 ALARM POINT LOGGER

� RECIPE HANDLING

� UNLIMITED PASSWORD PROTECTION

� REAL TIME CLOCK, BATTERY BACKED

� EXPRESSION EVALUATION

� 32-BIT MATH

� DIRECT PLC COMMUNICATION

� NEMA 4/IP65 STEEL ENCLOSURE

DESCRIPTION
The Paradigm operator interface Model CL-05 was designed to meet the

industrial demands of application power, versatility, reliability, and ease of use.

The CL-05 has provision, common to all Paradigm Family products, allowing

for future product upgrades as new options and capabilities are developed.

SAFETY SUMMARY
All safety related regulations, local codes and instructions that appear in the

manual or on equipment must be observed to ensure personal safety and to

prevent damage to either the instrument or equipment connected to it. If

equipment is used in a manner not specified by the manufacturer, the protection

provided by the equipment may be impaired.

Do not use this unit to directly command motors, valves, or other actuators

not equipped with safeguards. To do so, can be potentially harmful to persons

or equipment in the event of a fault to the unit.

SPECIFICATIONS
1. POWER REQUIREMENTS: 11 min to 30 max. VDC @ 2.5 W

Power Up Current: 2.5 A for 1 msec max.

Must use a Class 2 or SELV rated power supply.

2. DISPLAY: 2 lines of 20 characters, 5 mm high liquid crystal display with

bright LED backlight (with on/off software control)

3. KEYPAD: 3 screen legendable soft keys, numeric pad with raise, lower, next,

previous, enter, delete, exit, alarms and mute keys.

4. MEMORY: 128 K (64 K user) battery backed RAM

(Battery life expectancy 10 years)

Optional factory fit expansion 256 K (192 K user)

5. SERIAL PORTS: One RS-232 for PC or printer connections, one RS232

and one RS485 for PLC connections up to 19200 Baud.

6. PHYSICAL DIMENSIONS: L = 170 mm, H = 130 mm, D = 56 mm.

7. CONSTRUCTION: Metal enclosure with NEMA 4/IP65 front plate when

correctly fitted with the gasket provided. This unit is rated for NEMA 4/IP65

indoor use. Installation Category I, Pollution Degree 2.

8. FIELD CONNECTIONS: Removable screw terminal blocks.

9. ENVIRONMENTAL CONDITIONS:

Operating Temperature: 0 to 40°C

Storage Temperature: -20 to 80°C

Operating and Storage Humidity: 80% max. relative humidity

(non-condensing) from 0°C to 40°C.

Altitude: Up to 2000 meters

10. WEIGHT: 1.6 lbs. (0.72 Kg)

MODEL CL05 - PARADIGM 2 X 20 LCD OPERATOR INTERFACE TERMINAL

DIMENSIONS “In inches (mm)”
PANEL CUT-OUT

MODEL NO. DESCRIPTION PART NO.

LCD, 2 X 20, 3 Soft keys, 128 K memory CL050000CL-05

ORDERING INFORMATION

CAUTION: Read complete instructions prior to
installation and operation of the unit.

7

� 2 LINE X 20 CHARACTER LIQUID CRYSTAL DISPLAY WITH LED

BACKLIGHT

� 250 ALARM POINT LOGGER

� RECIPE HANDLING

� COMPREHENSIVE REPORT GENERATION

� UNLIMITED PASSWORD PROTECTION

� REAL TIME CLOCK, BATTERY BACKED

� EXPRESSION EVALUATION

� 32 BIT / FLOATING POINT MATH

� DIRECT, NETWORK (One family of PLCs) OR MODEM LINK TO

PLC CONTROL SYSTEM

� NEMA 4/IP65 STEEL ENCLOSURE

DESCRIPTION
The CL-10 from the Paradigm Range of operator interfaces meets the ever

increasing demands of industry for powerful easy-to-use terminals. Both

hardware and software are designed to allow the user to easily upgrade and take

full advantage of our continuing development and improvements to our

products.

SAFETY SUMMARY
All safety related regulations, local codes and instructions that appear in the

manual or on equipment must be observed to ensure personal safety and to

prevent damage to either the instrument or equipment connected to it. If

equipment is used in a manner not specified by the manufacturer, the protection

provided by the equipment may be impaired.

Do not use this unit to directly command motors, valves, or other actuators

not equipped with safeguards. To do so, can be potentially harmful to persons

or equipment in the event of a fault to the unit.

SPECIFICATIONS
1. POWER REQUIREMENTS: 11 min to 30 max. VDC @ 2.5 W

Power Up Current: 3.0A for 1 msec. max.

Must use a Class 2 or SELV rated power supply.

2. DISPLAY: 2 lines of 20 characters, 5 mm high liquid crystal display with

bright LED backlight (with on/off software control)

3. KEYPAD: 3 screen legendable soft keys, 8 User re-legendable function keys,

numeric pad with raise, lower, next, previous, enter, delete, exit, alarms and

mute keys, all with Tactile feedback.

4. MEMORY: 128 K (64 K user) battery backed RAM (Battery life expectancy

10 years). Optional factory fit expansion to 256 K (192 K user).

5. SERIAL PORTS: One RS-232 for PC or printer connections, one RS232

and one RS485 for PLC connection up to 19200 Baud.

6. PHYSICAL DIMENSIONS: L = 206 mm, H = 162 mm, D = 57 mm.

7. CONSTRUCTION: Metal enclosure with NEMA 4/IP65 front plate when

correctly fitted with the gasket provided. This unit is rated for NEMA 4/IP65

indoor use. Installation Category I, Pollution Degree 2

8. FIELD CONNECTIONS: Removable screw terminal blocks.

9. ENVIRONMENTAL CONDITIONS:

Operating Temperature: 0 to 40°C

Storage Temperature: -20 to 80°C

Operating and Storage Humidity: 80% max. relative humidity

(non-condensing) from 0°C to 40°C.

Altitude: Up to 2000 meters

10. WEIGHT: 2 lbs. (0.9 Kg)

MODEL CL10 - PARADIGM 2 X 20 LCD OPERATOR INTERFACE TERMINAL

DIMENSIONS “In inches (mm)” PANEL CUT-OUT

ORDERING INFORMATION

CAUTION: Read complete instructions prior to
installation and operation of the unit.

CL100000

CL100010

LCD, 2 X 20, 8 Function, 3 Soft keys, 128 K memory

LCD, 2 X 20, 8 Function, 3 Soft keys, 256 K memory

PART NO.DESCRIPTIONMODEL NO.

CL-10

8

DESCRIPTION
The CL-15 from the Paradigm Range of operator interfaces meets the ever

increasing demands of industry for powerful easy-to-use terminals. Both

hardware and software are designed to allow the user to easily upgrade and take

full advantage of our continuing development and improvements to our

products.

SAFETY SUMMARY
All safety related regulations, local codes and instructions that appear in the

manual or on equipment must be observed to ensure personal safety and to

prevent damage to either the instrument or equipment connected to it. If

equipment is used in a manner not specified by the manufacturer, the protection

provided by the equipment may be impaired.

Do not use this unit to directly command motors, valves, or other actuators

not equipped with safeguards. To do so, can be potentially harmful to persons

or equipment in the event of a fault to the unit.

SPECIFICATIONS
1. POWER REQUIREMENTS: 11 min. to 30 max. VDC @ 3.0 W

Power Up Current: 2.5 A for 1 msec. max.

Must use a Class 2 or SELV rated power supply.

2. DISPLAY: 2 lines of 40 characters, 5 mm high liquid crystal display with

bright LED backlight (with on/off software control)

3. KEYPAD: 5 screen legendable soft keys, raise, lower, next, previous, exit,

menu, alarms and mute keys, all with Tactile feedback.

4. MEMORY: 128 K (64 K user) battery backed RAM (Battery life expectancy

10 years). Optional factory fit expansion to 256 K (192 K user).

5. SERIAL PORTS: One RS-232 for PC or printer connection, one RS232 and

one RS485 for PLC connection up to 19200 Baud.

6. PHYSICAL DIMENSIONS: L = 240 mm, H = 160 mm, D = 55 mm.

7. CONSTRUCTION: Metal enclosure with NEMA 4/IP65 front plate when

correctly fitted with the gasket provided. This unit is rated for NEMA 4/IP65

indoor use. Installation Category I, Pollution Degree 2

8. FIELD CONNECTIONS: Removable screw terminal blocks.

9. ENVIRONMENTAL CONDITIONS:

Operating Temperature: 0 to 40°C

Storage Temperature: -20 to 80°C

Operating and Storage Humidity: 80% max. relative humidity

(non-condensing) from 0°C to 40°C.

Altitude: Up to 2000 meters

10. WEIGHT: 1.6 lbs. (0.72 Kg)

DIMENSIONS “In inches (mm)” PANEL CUT-OUT

MODEL CL15 - PARADIGM 2 X 40 LCD OPERATOR INTERFACE TERMINAL

� 2 LINE X 40 CHARACTER LIQUID CRYSTAL DISPLAY WITH

LED BACKLIGHT

� 250 ALARM POINT LOGGER

� RECIPE HANDLING

� COMPREHENSIVE REPORT GENERATION

� UNLIMITED PASSWORD PROTECTION

� REAL TIME CLOCK, BATTERY BACKED

� EXPRESSION EVALUATION

� 32 BIT / FLOATING POINT MATH

� DIRECT, NETWORK (One family of PLCs) OR MODEM LINK

TO PLC CONTROL SYSTEM

� NEMA 4/IP65 STEEL ENCLOSURE

CAUTION: Read complete instructions prior to
installation and operation of the unit.

MODEL NO. DESCRIPTION PART NO.

CL-15
LCD, 2 X 40, 5 Soft keys, 128 K memory

LCD, 2 X 40, 5 Soft keys, 256 K memory

CL150000

CL150010

ORDERING INFORMATION

9

� 4 LINE X 20 CHARACTER LIQUID CRYSTAL DISPLAY WITH LED

BACKLIGHT

� 250 ALARM POINT LOGGER

� RECIPE HANDLING

� COMPREHENSIVE REPORT GENERATION

� UNLIMITED PASSWORD PROTECTION

� REAL TIME CLOCK, BATTERY BACKED

� EXPRESSION EVALUATION

� 32 BIT / FLOATING POINT MATH

� DIRECT, NETWORK (One family of PLCs) OR MODEM LINK TO

PLC CONTROL SYSTEM

� NEMA 4/IP65 STEEL ENCLOSURE

MODEL CL20 - PARADIGM 4 X 20 LCD OPERATOR INTERFACE TERMINAL

and UL Recognized Component,
File #E179259

GENERAL DESCRIPTION
The Model CL20 Operator Interface Terminal combines unique capabilities

normally expected only from high-end units, at a very affordable price. The

CL20 is configured using the same powerful EDICT97 Software as all Red

Lion Paradigm Operator Interfaces. The result is savings in time to get

challenging applications up and running, and frequent savings in hardware costs

due to replacing many functions usually performed in separate expensive

devices.

CL20 is robustly constructed for an industrial environment. With a metal

enclosure and a non-corroding NEMA 4/IP65 front panel.

SAFETY SUMMARY
All safety related regulations, local codes and instructions that appear in the

manual or on equipment must be observed to ensure personal safety and to

prevent damage to either the instrument or equipment connected to it. If

equipment is used in a manner not specified by the manufacturer, the protection

provided by the equipment may be impaired.

Do not use this unit to directly command motors, valves, or other actuators

not equipped with safeguards. To do so, can be potentially harmful to persons

or equipment in the event of a fault to the unit.

SPECIFICATIONS
1. POWER REQUIREMENT: 11 min. to 30 max. VDC @ 3.0 W

Power Up Current: 3.0 A for 1msec. max.

Must use a Class 2 or SELV rated power supply.

2. DISPLAY: 4 lines of 20 characters, 0.197" (5 mm) high liquid crystal display

with bright LED backlight (with on/off software control)

3. KEYPAD: 3 screen legendable soft keys, 8 User re-legendable function

keys, numeric pad with raise, lower, next, previous, enter, delete, exit, alarms

and mute keys, all with Tactile feedback.

4. MEMORY: 128 K (64 K user) battery backed RAM (Battery life expectancy

10 years). Optional factory fit expansion to 256 K (192 K user).

5. SERIAL PORTS: Data Format and Baud Rates for each port is individually

software programmable up to 19200 baud.

Port 1: Programming Port - RS-232 on an RJ-11 jack.

Port 2: RS-232 Port on a Plug-In Screw Terminal Block

Port 3: RS-485 Port on a Plug-In Screw Terminal Block

(Up to 20 units can be connected and individually addressed.)

Note: LED Indicators show communications status on Ports 2 & 3

6. COMMUNICATION MODES: Any of the three ports can be used to

communicate with Serial Devices. The CL20 may utilize one device protocol

to operate as either a Master or Slave, on one port. If required CL20 may

simultaneously communicate to Red Lion Serial devices, or a printer on a

second port.

7. PHYSICAL DIMENSIONS: L = 8.11" (206 mm), H = 6.38" (162 mm),

D = 2.22" (56.5 mm).

8. CONSTRUCTION: Metal enclosure with NEMA 4/IP65 front plate when

correctly fitted with the gasket provided. This unit is rated for NEMA 4/IP65

indoor use. Installation Category I, Pollution Degree 2

9. FIELD CONNECTION: Removable screw terminal blocks.

10. ENVIRONMENTAL CONDITIONS:

Operating Temperature: 0 to 40°C

Storage Temperature: -20 to 80°C

Operating and Storage Humidity: 80% max. relative humidity

(non-condensing) from 0°C to 40°C.

Altitude: Up to 2000 meters

11. CERTIFICATIONS AND COMPLIANCES:

UL Recognized Component, File #E179259

Recognized to U.S. and Canadian requirements under the Component

Recognition Program of Underwriters Laboratories, Inc

ELECTRICAL SAFETY

EN61010-1, IEC 1010-1

Safety requirements for electrical equipment for measurement, control,

and Laboratory use, Part 1

ELECTROMAGNETIC COMPATIBILITY

12. WEIGHT: 2.1 lb. (0.95 Kg)

CAUTION: Read complete instructions prior to
installation and operation of the unit.

ORDERING INFORMATION

CL200000LCD, 4 X 20, 8 Function, 3 Soft keys, 128 K memory

CL200010LCD, 4 X 20, 8 Function, 3 Soft keys, 256 K memory
CL-20

PART NUMBERDESCRIPTIONMODEL NO.

Limits and Methods of Measurement of Radio
Disturbance Characteristics of Information
Technology Equipment

EN 55022-B : 1995

Electromagnetic Compatibility Directive
Generic Immunity Standard
Part 2 : Industrial Environment

EN 50082-2 : 1994

Electromagnetic Compatibility Directive
Generic Emission Standard
Part 2 : Industrial Environment

EN 50081-2 : 1994

10

DIMENSIONS “In inches (mm)”
PANEL CUT-OUT

� 2 LINE X 40 CHARACTER LIQUID CRYSTAL DISPLAY WITH LED

BACKLIGHT

� 250 ALARM POINT LOGGER

� RECIPE HANDLING

� COMPREHENSIVE REPORT GENERATION

� UNLIMITED PASSWORD PROTECTION

� REAL TIME CLOCK, BATTERY BACKED

� EXPRESSION EVALUATION

� 32 BIT / FLOATING POINT MATH

� DIRECT, NETWORK (One family of PLCs) OR MODEM LINK TO

PLC CONTROL SYSTEM

� NEMA 4/IP65 STEEL ENCLOSURE

MODEL CL40 - PARADIGM 2 X 40 LCD OPERATOR INTERFACE TERMINAL

GENERAL DESCRIPTION
The Model CL40 Operator Interface Terminal combines unique capabilities

normally expected only from high-end units, at a very affordable price. The

CL40 is configured using the same powerful EDICT97 Software as all Red

Lion Paradigm Operator Interfaces. The result is savings in time to get

challenging applications up and running, and frequent savings in hardware costs

due to replacing many functions usually performed in separate expensive

devices.

CL40 is robustly constructed for an industrial environment. With a metal

enclosure and a non-corroding NEMA 4/IP65 front panel.

SAFETY SUMMARY
All safety related regulations, local codes and instructions that appear in the

manual or on equipment must be observed to ensure personal safety and to

prevent damage to either the instrument or equipment connected to it. If

equipment is used in a manner not specified by the manufacturer, the protection

provided by the equipment may be impaired.

Do not use this unit to directly command motors, valves, or other actuators

not equipped with safeguards. To do so, can be potentially harmful to persons

or equipment in the event of a fault to the unit.

SPECIFICATIONS
1. POWER REQUIREMENT: 11 min. to 30 max. VDC @ 3.0 W

Power Up Current: 3.0 A for 1msec. max.

Must use a Class 2 or SELV rated power supply.

2. DISPLAY: 2 lines of 40 characters, 0.197" (5 mm) high liquid crystal display

with bright LED backlight (with on/off software control)

3. KEYPAD: 5 screen legendable soft keys, numeric pad with raise, lower,

next, previous, enter, delete, exit, menu, alarms and mute keys, all with

Tactile feedback.

4. MEMORY: 128 K (64 K user) battery backed RAM (Battery life expectancy

10 years). Optional factory fit expansion to 256 K (192 K user).

5. SERIAL PORTS: Data Format and Baud Rates for each port is individually

software programmable up to 19200 baud.

Port 1: Programming Port - RS-232 on an RJ-11 jack.

Port 2: RS-232 Port on a Plug-In Screw Terminal Block

Port 3: RS-485 Port on a Plug-In Screw Terminal Block

(Up to 20 units can be connected and individually addressed.)

Note: LED Indicators show communications status on Ports 2 & 3

6. PHYSICAL DIMENSIONS: L = 9.45" (240 mm), H = 6.3" (160 mm),

D = 2.17" (55 mm).

7. CONSTRUCTION: Metal enclosure with NEMA 4/IP65 front plate when

correctly fitted with the gasket provided. This unit is rated for NEMA 4/IP65

indoor use. Installation Category I, Pollution Degree 2

8. FIELD CONNECTION: Removable screw terminal blocks.

9. ENVIRONMENTAL CONDITIONS:

Operating Temperature: 0 to 40°C

Storage Temperature: -20 to 80°C

Operating and Storage Humidity: 80% max. relative humidity

(non-condensing) from 0°C to 40°C.

Altitude: Up to 2000 meters
10. WEIGHT: 2.1 lb. (0.95 Kg)

CAUTION: Read complete instructions prior to
installation and operation of the unit.

ORDERING INFORMATION

MODEL NO. DESCRIPTION PART NUMBER

CL-40
LCD, 2 X 40, 5 Soft keys, 256 K memory CL400010

LCD, 2 X 40, 5 Soft keys, 128 K memory CL400000

11

DIMENSIONS “In inches (mm)” PANEL CUT-OUT

� 2 LINE X 20 CHARACTER VACUUM FLUORESCENT DISPLAY

� 500 ALARM POINT LOGGER

� RECIPE HANDLING

� COMPREHENSIVE REPORT GENERATION

� UNLIMITED PASSWORD PROTECTION

� REAL TIME CLOCK, BATTERY BACKED

� EXPRESSION EVALUATION

� 32 BIT / FLOATING POINT MATH

� DIRECT, NETWORK (Including Multiple protocol) OR MODEM

LINK TO PLC

� NEMA 4/IP65 STEEL ENCLOSURE

DESCRIPTION
The CX-100 from the Paradigm Range of operator interfaces meets the ever

increasing demands of industry for powerful easy-to-use terminals. Both

hardware and software are designed to allow the user to easily upgrade and take

full advantage of continuing development and improvements to our products.

SAFETY SUMMARY
All safety related regulations, local codes and instructions that appear in the

manual or on equipment must be observed to ensure personal safety and to

prevent damage to either the instrument or equipment connected to it. If

equipment is used in a manner not specified by the manufacturer, the protection

provided by the equipment may be impaired.

Do not use this unit to directly command motors, valves, or other actuators

not equipped with safeguards. To do so, can be potentially harmful to persons

or equipment in the event of a fault to the unit.

SPECIFICATIONS
1. POWER REQUIREMENTS: 11 min. to 30 max. VDC @ 3.0 W

Power Up Current: 2.75 A for 3.5 msec. max.

Must use a Class 2 or SELV rated power supply.

2. DISPLAY: 2 lines of 20 characters, 5 mm high Vacuum Fluorescent display

3. KEYPAD: 3 screen legendable soft keys, 8 User re-legendable function keys,

numeric pad with raise, lower, next, previous, enter, delete, exit, alarms and

mute keys, all with Tactile feedback.

4. MEMORY: 128 K (64 K user) battery backed RAM (Battery life expectancy

10 years). Optional factory fit expansion to 256 K (192 K user).

5. SERIAL PORTSs: One RS-232 for PC or printer connections, one RS232

and one RS485 for PLC connection up to 19200 Baud. (Can be used as a

three port device for multiple protocol applications)

6. PHYSICAL DIMENSIONS: L = 206 mm, H = 162 mm, D = 57 mm.

7. CONSTRUCTION: Metal enclosure with NEMA 4/IP65 front plate when

correctly fitted with the gasket provided. This unit is rated for NEMA 4/IP65

indoor use. Installation Category I, Pollution Degree 2

8. FIELD CONNECTIONS: Removable screw terminal blocks.

9. ENVIRONMENTAL CONDITIONS:

Operating Temperature: 0 to 40°C

Storage Temperature: -20 to 80°C

Operating and Storage Humidity: 80% max. relative humidity

(non-condensing) from 0°C to 40°C.

Altitude: Up to 2000 meters

10. WEIGHT: 2.1 lbs. (0.95 Kg)

MODEL CX100 - PARADIGM 2 X 20 VFD OPERATOR INTERFACE TERMINAL

MODEL NO. DESCRIPTION PART NO.

CX-100
VFD, 2 X 20, 8 Function keys, 256 K memory

VFD, 2 X 20, 8 Function keys, 128 K memory

CX100010

CX100000

ORDERING INFORMATION

CAUTION: Read complete instructions prior to
installation and operation of the unit.

12

DIMENSIONS “In inches (mm)” PANEL CUT-OUT

DESCRIPTION
The CX-150 from the Paradigm Range of operator interfaces meets the ever

increasing demands of industry for powerful easy-to-use terminals. Both

hardware and software are designed to allow the user to easily upgrade and take

full advantage of our continuing development and improvements to our

products.

SAFETY SUMMARY
All safety related regulations, local codes and instructions that appear in the

manual or on equipment must be observed to ensure personal safety and to

prevent damage to either the instrument or equipment connected to it. If

equipment is used in a manner not specified by the manufacturer, the protection

provided by the equipment may be impaired.

Do not use this unit to directly command motors, valves, or other actuators

not equipped with safeguards. To do so, can be potentially harmful to persons

or equipment in the event of a fault to the unit.

SPECIFICATIONS
1. POWER REQUIREMENTS: 11 min. to 30 max. VDC @ 4.7 W

Power Up Current: 2.5 A for 25 msec. max.

Must use a Class 2 or SELV rated power supply.

2. DISPLAY: 2 lines of 40 characters, 5 mm high Vacuum Fluorescent display

3. KEYPAD: 5 screen legendable soft keys, raise, lower, next, previous, exit,

menu, alarms and mute keys, all with Tactile feedback.

4. MEMORY: 128 K (64 K user) battery backed RAM (Battery life expectancy

10 years). Optional factory fit expansion to 256 K (192 K user).

5. SERIAL PORTS: One RS-232 for PC or printer connection, one RS232 and

one RS485 for PLC connection up to 19200 Baud. (Can be used as a three

port device for multiple protocol applications)

6. PHYSICAL DIMENSIONS: L = 285 mm, H = 106 mm, D = 57 mm.

7. CONSTRUCTION: Metal enclosure with NEMA 4/IP65 front plate when

correctly fitted with the gasket provided. This unit is rated for NEMA 4/IP65

indoor use. Installation Category I, Pollution Degree 2

8. FIELD CONNECTIONS: Removable screw terminal blocks.

9. ENVIRONMENTAL CONDITIONS:

Operating Temperature: 0 to 40°C

Storage Temperature: -20 to 80°C

Operating and Storage Humidity: 80% max. relative humidity

(non-condensing) from 0°C to 40°C.

Altitude: Up to 2000 meters

10. WEIGHT: 2.1 lbs. (0.95 Kg)

� 2 LINE X 40 CHARACTER VACUUM FLUORESCENT DISPLAY

� 500 ALARM POINT LOGGER

� RECIPE HANDLING

� COMPREHENSIVE REPORT GENERATION

� UNLIMITED PASSWORD PROTECTION

� REAL TIME CLOCK, BATTERY BACKED

� EXPRESSION EVALUATION

� 32 BIT / FLOATING POINT MATH

� DIRECT, NETWORK (Including Multiple protocols) OR MODEM

LINK TO PLC

� NEMA 4/IP65 STEEL ENCLOSURE

MODEL CX150 - PARADIGM 2 X 40 VFD OPERATOR INTERFACE TERMINAL

MODEL NO. DESCRIPTION PART NO.

CX-150
VFD, 4 X 20, 8 Function keys, 256 K memory

VFD, 4 X 20, 8 Function keys, 128 K memory

CX150010

CX150000

ORDERING INFORMATION

13

DIMENSIONS “In inches (mm)”
PANEL CUT-OUT

MODEL CX200 - PARADIGM 4 X 20 VFD OPERATOR INTERFACE TERMINAL

� 4 LINE X 20 CHARACTER VACUUM FLUORESCENT DISPLAY

� 500 ALARM POINT LOGGER

� RECIPE HANDLING

� COMPREHENSIVE REPORT GENERATION

� UNLIMITED PASSWORD PROTECTION

� REAL TIME CLOCK, BATTERY BACKED

� EXPRESSION EVALUATION

� 32 BIT / FLOATING POINT MATH

� DIRECT, NETWORK (Including Multiple protocol) OR MODEM LINK

TO PLC

� NEMA 4/IP65 STEEL ENCLOSURE

DESCRIPTION
The CX-200 from the Paradigm Range of operator interfaces meets the ever

increasing demands of industry for powerful easy-to-use terminals. Both

hardware and software are designed to allow the user to easily upgrade and take

full advantage of our continuing development and improvements to our

products.

SAFETY SUMMARY
All safety related regulations, local codes and instructions that appear in the

manual or on equipment must be observed to ensure personal safety and to

prevent damage to either the instrument or equipment connected to it. If

equipment is used in a manner not specified by the manufacturer, the protection

provided by the equipment may be impaired.

Do not use this unit to directly command motors, valves, or other actuators

not equipped with safeguards. To do so, can be potentially harmful to persons

or equipment in the event of a fault to the unit.

SPECIFICATIONS
1. POWER REQUIREMENTS: 11 min to 30 max. VDC @ 3.2 W

Power Up Current: 2.5 A for 7 msec. max.

Must use a Class 2 or SELV rated power supply.

2. DISPLAY: 4 lines of 20 characters, 5 mm high Vacuum Fluorescent display

3. KEYPAD: 3 screen legendable soft keys, 8 User re-legendable function keys,

numeric pad with raise, lower, next, previous, enter, delete, exit, alarms and

mute keys, all with Tactile feedback.

4. MEMORY: 128 K (64 K user) battery backed RAM (Battery life expectancy

10 years). Optional factory fit expansion to 256 K (192 K user).

5. SERIAL PORTS: One RS-232 for PC or printer connections, one RS232

and one RS485 for PLC connection up to 19200 Baud (Can be used as a three

port device for multiple protocol applications)

6. PHYSICAL DIMENSIONS: L = 206 mm, H = 175 mm, D = 57 mm.

7. CONSTRUCTION: Metal enclosure with NEMA 4/IP65 front plate when

correctly fitted with the gasket provided. This unit is rated for NEMA 4/IP65

indoor use. Installation Category I, Pollution Degree 2

8. FIELD CONNECTIONS: Removable screw terminal blocks.

9. ENVIRONMENTAL CONDITIONS:

Operating Temperature: 0 to 40°C

Storage Temperature: -20 to 80°C

Operating and Storage Humidity: 80% max. relative humidity

(non-condensing) from 0°C to 40°C.

Altitude: Up to 2000 meters

10. WEIGHT: 2.3 lbs. (0.1 Kg)
MODEL NO. DESCRIPTION PART NO.

CX-200
VFD, 4 X 20, 8 Function keys, 256 K memory

VFD, 4 X 20, 8 Function keys, 128 K memory

CX200010

CX200000

ORDERING INFORMATION

CAUTION: Read complete instructions prior to
installation and operation of the unit.

14

DESCRIPTION
The Paradigm operator interface Model GL-300 was designed to meet the

industrial demands of application power, versatility, reliability, and ease of use.

The GL-300 has provision, common to all Paradigm Family products, allowing

for future product upgrades as new options and capabilities are developed.

SAFETY SUMMARY
All safety related regulations, local codes and instructions that appear in the

manual or on equipment must be observed to ensure personal safety and to

prevent damage to either the instrument or equipment connected to it. If

equipment is used in a manner not specified by the manufacturer, the protection

provided by the equipment may be impaired.

Do not use this unit to directly command motors, valves, or other actuators

not equipped with safeguards. To do so, can be potentially harmful to persons

or equipment in the event of a fault to the unit.

SPECIFICATIONS
1. POWER REQUIREMENTS: 11 min. to 30 max. VDC @ 4.8 W

Power Up Current: 2.5 A for 1 msec max.

Must use a Class 2 or SELV rated power supply.

2. DISPLAY: 256 x 128 pixel full graphic display with cold cathode backlight.

Automatic temperature compensation. Text formats up to 16 x 40 characters.

3. KEYPAD: 4 screen legendable soft keys, raise, lower, next, previous, exit,

menu, alarms and mute keys are all embossed and have tactile feedback.

4. MEMORY: 256K (192k user) battery backed RAM (Battery life expectancy

3 years 50/50 on/off cycle). Optional expansion to 768K (704K user).

5. SERIAL PORTS: One RS-232 for PC or printer connections.

One RS232 and one RS485 for PLC connections up to 19200 Baud. (Can be

used as a three port device for multiple protocol applications.)

6. ENVIRONMENTAL CONDITIONS:

Operating Temperature: 0 to 40°C

Storage Temperature: -20 to 80°C

Operating and Storage Humidity: 20 to 80% max. RH (non-condensing)

from 0°C to 40°C.

Altitude: Up to 2000 meters

7. PHYSICAL DIMENSIONS: L = 8.11" (206 mm), H = 6.38" (162 mm),

D = 2.64" (67 mm).

8. CONSTRUCTION: Metal enclosure with NEMA 4/IP65 front plate when

correctly fitted with the gasket provided. This unit is rated for NEMA 4/IP65

indoor use. Installation Category I, Pollution Degree 2

9. FIELD CONNECTIONS: Removable screw terminal blocks.

10. WEIGHT: 2.80 lb. (1.27 Kg.)

CAUTION: Read complete instructions prior to

installation and operation of the unit.

� 256 X 128 PIXEL CCFL LIQUID CRYSTAL DISPLAY

� 500 ALARM POINT LOGGER

� COMPREHENSIVE REPORT GENERATION

� POWERFUL RECIPE HANDLING

� UNLIMITED PASSWORD PROTECTION

� REAL TIME CLOCK BATTERY BACKED

� EXPRESSION EVALUATION

� 32-BIT/FLOATING POINT MATHS

� DIRECT NETWORK (Including Multiple Protocol) OR MODEM LINK

TO PLC

� NEMA 4/IP65 METAL ENCLOSURE

MODEL GL300 - PARADIGM GRAPHICAL OPERATOR INTERFACE TERMINAL

DIMENSIONS “In inches (mm)”
PANEL CUT-OUT

MODEL NO. DESCRIPTION

GL-300
256 X 128 CCFL, 16 X 40, 4 Soft keys, 768 K memory

256 X 128 CCFL, 16 X 40, 4 Soft keys, 256 K memory

GL300010

GL300000

PART NUMBER

ORDERING INFORMATION

15

� 256 X 128 PIXEL CCFL LIQUID CRYSTAL DISPLAY

� MULTIPLE LANGUAGE SUPPORT (UP TO 8 LANGUAGES)

� 500 ALARM POINT LOGGER

� COMPREHENSIVE REPORT GENERATION

� POWERFUL RECIPE HANDLING

� UNLIMITED PASSWORD PROTECTION

� REAL TIME CLOCK BATTERY BACKED

� EXPRESSION EVALUATION

� 32-BIT/FLOATING POINT MATH

� DIRECT NETWORK (Including Multiple Protocol) OR MODEM LINK

TO PLC

� INDUSTRIAL TOUCHSCREEN

� NEMA 4/IP65 ALUMINUM ENCLOSURE

DESCRIPTION
Model GL300T Operator Terminal combines unique capabilities normally

expected only from expensive SCADA packages, with dramatic ease of use.

The GL300T is configured using the same powerful EDICT 97 Software as all

Red Lion Paradigm Operator Interfaces. The results are savings in time to get

challenging applications up and running, and frequent savings in hardware costs

due to replacing many functions usually performed in separate expensive

devices.

SAFETY SUMMARY
All safety related regulations, local codes and instructions that appear in the

manual or on equipment must be observed to ensure personal safety and to
prevent damage to either the instrument or equipment connected to it. If
equipment is used in a manner not specified by the manufacturer, the protection
provided by the equipment may be impaired.

Do not use this unit to directly command motors, valves, or other actuators
not equipped with safeguards. To do so can be potentially harmful to persons or
equipment in the event of a fault to the unit.

GENERAL SPECIFICATIONS
1. POWER REQUIREMENTS: 11 VDC min. to 30 VDC max. @ 5.25 W

Power Up Current: 2.5 A for 1 msec max.

Must use a Class 2 or SELV rated power supply.

2. DISPLAY: 256 x 128 pixel full graphic display with cold cathode backlight.

Automatic temperature compensation. Text formats up to 16 x 40 characters.

3. MEMORY: 768K (704K user) battery backed RAM (Battery life expectancy

3 years 50/50 on/off cycle).

4. TOUCHSCREEN: Continuous resistive touch screen interface specified for

up to 5 million operations. 200 X 200 touch cells

5. ENVIRONMENTAL CONDITIONS:

Operating Temperature: 0 to 50°C

Storage Temperature: -20 to 60°C

Operating and Storage Humidity: 20 to 80% max. RH (non-condensing) from

0°C to 50°C.

Altitude: Up to 2000 meters

6. CERTIFICATIONS AND COMPLIANCES:

ELECTRICAL SAFETY

EN61010-1, IEC 1010-1

Safety requirements for electrical equipment for measurement, control,

and Laboratory use, Part 1

ELECTROMAGNETIC COMPATIBILITY

7. PHYSICAL DIMENSIONS: L = 7.65" (194.3 mm), H = 5.68" (144.3 mm),

D = 2.10" (53.3 mm).

8. CONSTRUCTION: Metal enclosure with NEMA 4/IP65 front plate when

correctly fitted with the gasket provided. This unit is rated for NEMA 4/IP65

indoor use. Installation Category I, Pollution Degree 2

9. FIELD CONNECTIONS: Removable screw terminal blocks.

10. WEIGHT: 2.32 lb. (1.05 Kg.)

INPUT/OUTPUT COMMUNICATIONS SPECS
1. SERIAL PORTS: Data Format and Baud Rates for each port are individually

software programmable up to 19200 baud.

Port 1: Programming Port - RS-232 on an RJ-11 jack.

Port 2: RS-232 Port on a Plug-In Screw Terminal Block

Port 3: RS-485 Port on a Plug-In Screw Terminal Block

(Up to 20 units can be connected and individually addressed.)

Note: LED Indicators show communications status on Ports 2 & 3

2. COMMUNICATION MODES: Any of the three ports can be used to

communicate with Serial Devices.

Model - GL300T may communicate in Master mode with a different device

protocol on each port (See Note).

Ports 2 and 3 may be configured as different device protocols in Master mode

and Port 1 may be used simultaneously in Slave mode for a third device

protocol.

However, only one of Ports 2 and 3 may be configured, if either is selected

as a Slave protocol.

Note: Except if Allen Bradley DH485 is selected on either Port 2 or 3, in

which case only Port 1 will be available for a separate Device Protocol.

MODEL GL300T - MONOCHROME TOUCHSCREEN OPERATOR INTERFACE

CAUTION: Read complete instructions prior to

installation and operation of the unit.

256 X 128 CCFL, w/touchscreen, 768 K memory GL300T00GL300T

PART NUMBERDESCRIPTIONMODEL NO.

ORDERING INFORMATION

EN 50081-2 : 1994 Electromagnetic Compatibility Directive Generic Emission
Standard; Part 2 : Industrial Environment

EN 50082-2 : 1994 Electromagnetic Compatibility Directive Generic Immunity
Standard; Part 2 : Industrial Environment

EN 55022-B : 1995 Limits and Methods of Measurement of Radio Disturbance
Characteristics of Information Technology Equipment

16

� MONOCHROME 256 x 128 PIXEL CCFL LIQUID CRYSTAL

DISPLAY

� 500 ALARM POINT LOGGER

� COMPREHENSIVE REPORT GENERATION

� UNLIMITED PASSWORD PROTECTION

� REAL TIME CLOCK BATTERY BACKED

� EXPRESSION EVALUATION

� 32 BIT / FLOATING POINT MATH

� DIRECT, NETWORK (Including Multiple Protocol) OR MODEM LINK

TO PLC

� NEMA 4/IP65 METAL ENCLOSURE

DESCRIPTION
The Paradigm operator interface Model GL-350 was designed to meet the

industrial demands of application power, versatility, reliability, and ease of use.

The GL-350 has provision, common to all Paradigm Family products, allowing

for future product upgrades and new options and capabilities are developed.

SAFETY SUMMARY
All safety related regulations, local codes and instructions that appear in the

manual or on equipment must be observed to ensure personal safety and to

prevent damage to either the instrument or equipment connected to it. If

equipment is used in a manner not specified by the manufacturer, the protection

provided by the equipment may be impaired.

Do not use this unit to directly command motors, valves, or other actuators

not equipped with safeguards. To do so, can be potentially harmful to persons

or equipment in the event of a fault to the unit.

SPECIFICATIONS
1. POWER REQUIREMENTS: 11 min. to 30 max. VDC @ 4.8 W

Power Up Current: 2.5 A for 1 msec. max.

Must use a Class 2 or SELV rated power supply.

2. DISPLAY: 256 x 128 pixel monochrome display with cold cathode backlight.

Automatic temperature compensation. Text formats upto 16 x 40 characters.

3. KEYPAD: 4 screen legendable soft keys, 12 User user-legendable function

keys, numeric pad and raise, lower, next, previous, enter, delete, exit, alarms

and mute keys all are embossed and have tactile feedback

4. MEMORY: 256K (192K user) battery backed RAM (Battery life expectancy

3 years 50/50 on/off cycle). Optional expansion to 768K (704K user).

5. SERIAL PORTS: One RS-232 for PC or printer connections. One RS232

and one RS485 for PLC connections up to 19200 Baud. (Can be used as a

three port device for multiple protocol applications.)

6. ENVIRONMENTAL CONDITIONS:

Operating Temperature: 0 to 40°C

Storage Temperature: -20 to 80°C

Operating and Storage Humidity: 20 to 80% max. RH (non-condensing)

from 0°C to 40°C.

Altitude: Up to 2000 meters

7. PHYSICAL DIMENSIONS: L = 8.82" (224 mm), H = 7.84" (199 mm),

D = 2.64" (67 mm).

8. CONSTRUCTION: Metal enclosure with NEMA 4/IP65 front plate when

correctly fitted with the gasket provided. This unit is rated for NEMA 4/IP65

indoor use. Installation Category I, Pollution Degree 2

9. FIELD CONNECTIONS: Removable screw terminal blocks.

10. WEIGHT: 3.04 lb. (1.38 Kg.)

MODEL GL350 - PARADIGM GRAPHICAL OPERATOR INTERFACE TERMINAL

DIMENSIONS “In inches (mm)” PANEL CUT-OUT

CAUTION: Read complete instructions prior to

installation and operation of the unit.

GL350000

GL350010

CCFL, 16 X 40, 12 Function, 4 Soft keys, 256 K memory

CCFL, 16 X 40, 12 Function, 4 Soft keys, 768 K memory
GL-350

PART NUMBERDESCRIPTIONMODEL NO.

ORDERING INFORMATION

17

� 640 x 480 PIXEL CCFL LIQUID CRYSTAL DISPLAY-7.5"

DIAGONAL DSTN COLOR-FULL VGA (16 colors)

� POWERFUL 32-BIT PROCESSOR AND ACCELERATED

GRAPHICS CONTROLLER FOR HIGH PERFORMANCE LEVELS

� MULTIPLE LANGUAGE SUPPORT (UP TO 8 LANGUAGES)

� ANIMATED PowerPoint® STYLE PAGE TRANSITIONS

� SLIDEOUT SOFTKEY MENUS

� 500 ALARM POINT LOGGER

� COMPREHENSIVE REPORT GENERATION

� POWERFUL RECIPE HANDLING

� UNLIMITED PASSWORD PROTECTION

� REAL TIME CLOCK BATTERY BACKED

� FORM C RELAY OUTPUT

� EXPRESSION EVALUATION

� 32-BIT/FLOATING POINT MATH

DESCRIPTION
The VX-500 and VX-500T from the Paradigm Range of operator interfaces

meet the ever increasing demands of industry for powerful easy-to-use

terminals. Both hardware and software are designed to allow the user to easily

upgrade and take full advantage of our continuing development and

improvements to our products.

SAFETY SUMMARY
All safety related regulations, local codes and instructions that appear in the

manual or on equipment must be observed to ensure personal safety and to
prevent damage to either the instrument or equipment connected to it. If
equipment is used in a manner not specified by the manufacturer, the protection
provided by the equipment may be impaired.

Do not use this unit to directly command motors, valves, or other actuators
not equipped with safeguards. To do so can be potentially harmful to persons or
equipment in the event of a fault to the unit.

SPECIFICATIONS
1. POWER REQUIREMENTS: 15 VDC min. to 30 VDC max. @ 9.75 W

Power Up Current: 2.5 A for 4 msec max.

Must use a Class 2 or SELV rated power supply.

2. DISPLAY: 640 x 480 pixels (7.5 inch diagonal) CCFL Liquid Crystal DSTN

color full VGA display. Text formats up to 40 x 30 characters. (VX500P00

and VX500TP0 optional enhanced display with 50% increased brightness

and significantly improved viewing angles.)

3. KEYPAD: 6 screen legendable soft keys, raise, lower, next, previous, exit,

menu, alarms and mute keys are all embossed and have tactile feedback.

4. TOUCHSCREEN (VX500T only): Continuous resistive touch screen

interface specified for up to 5 million operations. 200 X 200 touch cells

5. MEMORY:736K (672K user) battery backed RAM (Battery life expectancy

3 years 50/50 on/off cycle).

6. SERIAL PORTS: One RS-232 for PC or printer connections.

One RS232 and one RS485 for PLC connections up to 19200 Baud. (Can be

used as a three port device for multiple protocol applications.)

7. RELAY OUTPUT: Form C relay output 1/2A @ 125 VAC, 1 A @24 VDC

8. ENVIRONMENTAL CONDITIONS:

Operating Temperature: 0 to 50°C

Storage Temperature: -20 to 80°C

Operating and Storage Humidity: 20 to 80% max. RH (non-condensing)

from 0°C to 40°C.

Altitude: Up to 2000 meters

9. PHYSICAL DIMENSIONS: L = 9.77" (248.2 mm), H = 7.37" (187.2 mm),

D =2.1" (53.3 mm).

10. CONSTRUCTION: Metal enclosure with NEMA 4/IP65 front plate when

correctly fitted with the gasket provided. This unit is rated for NEMA 4/IP65

indoor use. Installation Category I, Pollution Degree 2

11. FIELD CONNECTIONS: Removable screw terminal blocks.

12. WEIGHT: 2.94 lb. (1.33 Kg.)

MODELS VX-500 & VX-500T - COLOR GRAPHICAL & COLOR GRAPHICAL
WITH TOUCHSCREEN OPERATOR TERMINALS

� NEMA 4/IP65 ALUMINUM ENCLOSURE

� DIRECT NETWORK (Including Multiple Protocol) OR MODEM LINK

TO PLC

CAUTION: Read complete instructions prior to

installation and operation of the unit.

VX-500T

VX500TP0

MODEL NO. DESCRIPTION PART NUMBER

640 X 480 CCFL, Full VGA Color, 40 X 30, 6 Soft keys,
W/Touchscreen 736 K memory (672 K user). Enhanced
Display Version

VX-500

VX500P00
640 X 480 CCFL, Full VGA Color, 40 X 30, 6 Soft keys,
736 K memory (672 K user). Enhanced Display Version

VX500T00

VX500000

640 X 480 CCFL, Full VGA Color, 40 X 30, 6 Soft keys,
W/Touchscreen 736 K memory (672 K user)

640 X 480 CCFL, Full VGA Color, 40 X 30, 6 Soft keys,
736 K memory (672 K user)

ORDERING INFORMATION

18

� 640 x 480 PIXEL CCFL LIQUID CRYSTAL DISPLAY-7.75"

DIAGONAL DSTN COLOR-FULL VGA (16 colors)

� POWERFUL 32-BIT PROCESSOR AND ACCELERATED

GRAPHICS CONTROLLER FOR HIGH PERFORMANCE LEVELS

� MULTIPLE LANGUAGE SUPPORT (UP TO 8 LANGUAGES)

� ANIMATED PowerPoint® STYLE PAGE TRANSITIONS

� SLIDE OUT SOFTKEY MENUS

� 500 ALARM POINT LOGGER

� COMPREHENSIVE REPORT GENERATION

� POWERFUL RECIPE HANDLING

� UNLIMITED PASSWORD PROTECTION

� REAL TIME CLOCK BATTERY BACKED

� FORM C RELAY OUTPUT

� EXPRESSION EVALUATION

� 32-BIT/FLOATING POINT MATH

� NEMA 4/IP65 ALUMINUM ENCLOSURE

DESCRIPTION
The VX-550 from the Paradigm Range of operator interfaces meets the ever

increasing demands of industry for powerful easy-to-use terminals. Both

hardware and software are designed to allow the user to easily upgrade and take

full advantage of our continuing development and improvements to our

products.

SAFETY SUMMARY
All safety related regulations, local codes and instructions that appear in the

manual or on equipment must be observed to ensure personal safety and to

prevent damage to either the instrument or equipment connected to it. If

equipment is used in a manner not specified by the manufacturer, the protection

provided by the equipment may be impaired.

Do not use this unit to directly command motors, valves, or other actuators

not equipped with safeguards. To do so can be potentially harmful to persons or

equipment in the event of a fault to the unit.

SPECIFICATIONS
1. POWER REQUIREMENTS: 15 VDC min. to 30 VDC max. @ 9.75 W

Power Up Current: 2.5 A for 4 msec max.

Must use a Class 2 or SELV rated power supply.

2. DISPLAY: 640 x 480 pixels (7.75 inch diagonal) CCFL Liquid Crystal

DSTN color full VGA display. Text formats up to 40 x 30 characters.

3. KEYPAD: 6 screen legendable soft keys, 16 User-legendable Function keys,

raise, lower, next, previous, exit, menu, alarms and mute keys are all

embossed and have tactile feedback.

4. MEMORY: 736K (672K user) battery backed RAM (Battery life expectancy

3 years 50/50 on/off cycle).

5. SERIAL PORTS: One RS-232 for PC or printer connections.

One RS232 and one RS485 for PLC connections up to 19200 Baud. (Can be

used as a three port device for multiple protocol applications.)

6. RELAY OUTPUT: Form C relay output 1/2A @ 125VAC, 1 A @ 24 VDC

7. CERTIFICATIONS AND COMPLIANCES:

ELECTRICAL SAFETY

EN61010-1, IEC 1010-1

Safety requirements for electrical equipment for measurement, control,

and Laboratory use, Part 1

ELECTROMAGNETIC COMPATIBILITY

8. ENVIRONMENTAL CONDITIONS:

Operating Temperature: 0 to 50°C

Storage Temperature: -20 to 80°C

Operating and Storage Humidity: 20 to 80% max. RH (non-condensing)

from 0°C to 40°C.

Altitude: Up to 2000 meters

9. PHYSICAL DIMENSIONS: L = 11.27" (286.3 mm), H = 7.94" (201.7

mm), D =2.1" (53.3 mm).

10. CONSTRUCTION: Metal enclosure with NEMA 4/IP65 front plate when

correctly fitted with the gasket provided. This unit is rated for NEMA 4/IP65

indoor use. Installation Category I, Pollution Degree 2

11. FIELD CONNECTIONS: Removable screw terminal blocks.

12. WEIGHT: 3.20 lb. (1.45 Kg.)

MODEL VX-550 - PARADIGM COLOR GRAPHICAL OPERATOR TERMINALS

� DIRECT NETWORK (Including Multiple Protocol) OR MODEM LINK

TO PLC

� 16 USER LEGENDABLE FUNCTION KEYS

CAUTION: Read complete instructions prior to

installation and operation of the unit.

640 X 480 CCFL, Full VGA Color, 40 X 30, 16
Legendable Function keys, 6 Soft keys, 736 K
memory (672 K user)

VX550S00VX-550

PART NUMBERDESCRIPTIONMODEL NO.

ORDERING INFORMATION

EN 50081-2 : 1994 Electromagnetic Compatibility Directive Generic
Emission Standard
Part 2 : Industrial Environment

EN 50082-2 : 1994 Electromagnetic Compatibility Directive Generic
Immunity Standard
Part 2 : Industrial Environment

EN 55022-B : 1995 Limits and Methods of Measurement of Radio
Disturbance Characteristics of Information
Technology Equipment

19

� 10.4" BRIGHT, WIDE VIEWING ANGLE VGA COLOR DISPLAY

640 X 480 PIXELS CCFL TFT (16 colors)

� 200 X 200 CELL RESISTIVE TOUCHSCREEN

� POWERFUL 32-BIT PROCESSOR AND ACCELERATED

GRAPHICS CONTROLLER FOR HIGH PERFORMANCE LEVELS

� MULTIPLE LANGUAGE SUPPORT (UP TO 8 LANGUAGES)

� ANIMATED PowerPoint® STYLE PAGE TRANSITIONS

� SLIDEOUT SOFTKEY MENUS

� 500 ALARM POINT LOGGER

� COMPREHENSIVE REPORT GENERATION

� POWERFUL RECIPE HANDLING

� UNLIMITED PASSWORD PROTECTION

� REAL TIME CLOCK BATTERY BACKED

� FORM C RELAY OUTPUT

� EXPRESSION EVALUATION

� 32-BIT/FLOATING POINT MATH

DESCRIPTION
Model TX700T Operator Terminal combines unique capabilities normally

expected only from expensive SCADA packages, with dramatic ease of use.

TX700T is configured using the same powerful EDICT97 Software as all Red

Lion Paradigm Operator Interfaces. The results are savings in time to get

challenging applications up and running, and frequent savings in hardware costs

due to replacing many functions usually performed in separate expensive

devices.

SAFETY SUMMARY
All safety related regulations, local codes and instructions that appear in the

manual or on equipment must be observed to ensure personal safety and to
prevent damage to either the instrument or equipment connected to it. If
equipment is used in a manner not specified by the manufacturer, the protection
provided by the equipment may be impaired.

Do not use this unit to directly command motors, valves, or other actuators
not equipped with safeguards. To do so can be potentially harmful to persons or
equipment in the event of a fault to the unit.

GENERAL SPECIFICATIONS
1. POWER REQUIREMENTS: 15 VDC min. to 30 VDC max. @ 15.25 W

Power Up Current: 2.5 A for 4 msec max.

Must use a Class 2 or SELV rated power supply.

2. DISPLAY: 640 x 480 pixels (10.4") CCFL Liquid Crystal TFT color full

VGA display. Text formats up to 40 x 30 characters.

3. KEYPAD: 6 screen legendable soft keys, raise, lower, next, previous, exit,

menu, alarms and mute keys are all embossed and have tactile feedback.

4. TOUCHSCREEN: Continuous resistive touch screen interface specified for

up to 5 million operations. 200 X 200 touch cells.

5. MEMORY: 736K (672k user) battery backed RAM (Battery life expectancy

3 years 50/50 on/off cycle).

6. RELAY OUTPUT: Form C relay output 1/2A @ 125 VAC, 1 A @24 VDC

7. ENVIRONMENTAL CONDITIONS:

Operating Temperature: 0 to 50°C

Storage Temperature: -20 to 60°C

Operating and Storage Humidity: 20 to 80% max. RH (non-condensing) from

0°C to 50°C.

Altitude: Up to 2000 meters

8. CERTIFICATIONS AND COMPLIANCES:

ELECTRICAL SAFETY

EN61010-1, IEC 1010-1

Safety requirements for electrical equipment for measurement, control,

and Laboratory use, Part 1

ELECTROMAGNETIC COMPATIBILITY

9. PHYSICAL DIMENSIONS: L = 12.16" (308.5 mm), H = 8.59" (218 mm),
D =2.14" (66.8 mm).

10. CONSTRUCTION: Metal enclosure with NEMA 4/IP65 front plate when

correctly fitted with the gasket provided. This unit is rated for NEMA 4/IP65

indoor use. Installation Category I, Pollution Degree 2

11. FIELD CONNECTIONS: Removable screw terminal blocks.

12. WEIGHT: 6.20 lb. (2.81 Kg.)

INPUT/OUTPUT COMMUNICATIONS SPECS
1. SERIAL PORTS: Data Format and Baud Rates for each port are individually

software programmable up to 19200 baud.

Port 1: Programming Port - RS-232 on an RJ-11 jack.

Port 2: RS-232 Port on a Plug-In Screw Terminal Block

Port 3: RS-485 Port on a Plug-In Screw Terminal Block

(Up to 32 units can be connected and individually addressed.)

Note: LED Indicators show communications status on Ports 2 & 3

2. COMMUNICATION MODES: Any of the three ports can be used to

communicate with Serial Devices.

Model - TX700T may communicate in Master mode with a different device

protocol on each port (See Note).

Ports 2 and 3 may be configured as different device protocols in Master mode and

Port 1 may be used simultneously in Slave mode for a third device protocol.

However, only one of Ports 2 and 3 may be configured, if either is selected

as a Slave protocol.

Note: Except if Allen Bradley DH485 is selected on either Port 2 or 3, in

which case only Port 1 will be available for a separate Device Protocol.

MODEL TX700T - COLOR TFT TOUCHSCREEN OPERATOR INTERFACE

� NEMA 4/IP65 ALUMINUM ENCLOSURE

� DIRECT NETWORK (Including Multiple Protocol) OR MODEM

LINK TO PLC

CAUTION: Read complete instructions prior to

installation and operation of the unit.

640 X 480 CCFL, Full VGA Color TFT, 40 X 30,
W/Touchscreen 736 K memory

TX700T00TX700T

PART NUMBERDESCRIPTIONMODEL NO.

ORDERING INFORMATION

EN 50081-2 : 1994 Electromagnetic Compatibility Directive Generic Emission
Standard; Part 2 : Industrial Environment

EN 50082-2 : 1994 Electromagnetic Compatibility Directive Generic Immunity
Standard; Part 2 : Industrial Environment

EN 55022-B : 1995 Limits and Methods of Measurement of Radio Disturbance
Characteristics of Information Technology Equipment

20

PROGRAMMABILITY
Event Driven Configuration Tool

Edict 97, an extremely powerful Windows 95/3.11 based software program,

provides for the intuitive configuration of every aspect of the operator

interface’s behavior. The requirement for time consuming PLC ladder logic is

drastically reduced by the unique event driven approach of EDICT 97. The

capability of this program, in conjunction with the PLC and the Paradigm

operator interface unit, ensures a great deal of advanced functionality for your

system. This powerful PLC/Paradigm system provides many of the capabilities

and features normally associated with the more complicated and costly

PC/SCADA systems. Display pages are easily generated, including PLC and

internal variables, text strings, or bar charts. All dynamic elements are also

available as alarms, recipes, triggers, and reports for the run time software. After

completion of the programming, the program is directly downloaded to the

operator interface from your PC, without any compiling or saving requirement.

When you require a change in your program, EDICT 97 loads only the change,

not the entire program, saving valuable on-line time.

DYNAMIC DISPLAY PAGE ELEMENTS
Each display page has provisions to show static and dynamic information,

including data variables, text messages, time, and date.

Data Variables can be either PLC derived or internally generated, either in data

entry or display only mode. The Paradigm unit has an extremely powerful

math capability, allowing the operator to manipulate the variables to meet the

specific application’s demands. If required, the display can be formatted to

BCD, binary, hex, floating point, and string. Upper and lower limits of data

entry variables are fully supported and password protected.

Text Message Animation enables several different types of animated text from

a local or global message table to be displayed. The message displayed is

dependent on the condition of the particular controlling expression. The

controlling expression may be a PLC bit level, a timer value, preset counter

condition, or any one of a wide variety of message triggers.

Time and Date in the Paradigm unit has the capability to display in any

combination of year, month, day, hours, minutes, and seconds.

Bar Graphs in horizontal format are easily attached to data variables. The

partial or full length bar graph displays can be scaled and offset to optimize

the required display effect.

SECURITY
The password protection scheme provides the ultimate in tamper-proof

capability. Access can be limited on a unit, page, recipe, or even individual data

entries.

ALARMS
The Paradigm unit can monitor and log up to 500 alarms. Such triggers as a

simple bit level transition, a PLC coil activation, or a complex application

algorithm can activate an alarm. The alarms can be time and date stamped, with

an automatic screen display and/or downloading to a printer for hard copy

recording purposes.

RECIPE HANDLING
Recipe handling in the Paradigm Operator Interfaces can be tailored to your

requirements. Using the “Data Files” section of Named Data, one can set up

arrays with meaningful titles, and select, edit, and maintain, recipe data up to

8000 elements per file. In conjunction with User Programs, and the flexible data

displays, the operator can select desired recipe, by number or by title, and either

upload from, or download to, the target system. All the functions of EDICT97

are available, so the programmer can password protect the editing of the recipes

and allow for the transfer of data from a host system.

REAL TIME SCHEDULE
Real time schedule allows for repetitive or one time task to take place in the

system. Typically a schedule action similar to...At 1:55 PM on Monday,

Wednesday, and Friday print the production report...is required in the

application. In conjunction with the recipe capabilities, a downloading of a

special recipe can be requested by the real time schedule feature.

MULTIPLE LANGUAGE SUPPORT
This powerful feature allows users to program the text in their databases in

up to 8 different languages. A system variable entry makes it easy for end users

to select one of the preprogrammed languages. EDICT-97 features powerful

language editing tools for easy implementation.

USER PROGRAMS
This feature offers the user the ability to incorporate custom application

requirements via a powerful program language. For example, a program

designated “Calculate Volume” which determines the amount of fluid in a round

tank at specific temperatures could be created. This program would be triggered

to run and display each time the page denoted as “Volume Now” is requested.

The ability to customize to your applications specialized needs is easily solved

with the user program capability.

KEYBOARD EDITING
All the interface keys can be programmed to perform virtually unlimited

functions with each key, having multiple actions assigned to three types of key

events: key pressed, key held down (auto repeat), and key released. Typical key

actions would be Gotopage, set value, load recipe, view alarms, print report, and

many more.

COMMUNICATIONS
With over 70 communication drivers available, the Paradigm operator

interface offers a wide range of connectivity including: PLCs, Variable Speed

Drives, Temperature Controllers, Bar Code Readers, etc. Utilizing real PLC data

references, the automatic comms configuration optimizes the system’s

communication performance. In the event that your specific driver does not

appear on the Paradigm drivers list, let us know, as this list is always being

expanded to meet our customers’ needs.

GRAPHIC UNITS
In addition to all the features of the character-based units, the graphic units

will provide exceptional value in displaying trend graphs, process schematics

and flow, and others, limited only by the imagination of the designer. The

programmer can use the built-in standard symbols, or construct them. A

sequence of graphical symbols can be assigned to a PLC location, and the

powerful software will step through the sequence without the necessity of

programming multiple expressions for each bitmap. Some of the inherent

features of the Graphical Display units:

� Data Logging

� Process symbols, such as tanks, valves, etc.

� Extraordinary color displays on the VX-500, VX-550and TX700T.

� Memory expansion is field-upgradeable.

� Plus all the functions available in EDICT 97, the powerful event driven

configuration tool that allows one to configure a system to do what is needed.

ANIMATED GRAPHICS
Graphical pages are constructed using both bitmaps and object graphics.

Animation items such as tending, tank filling, horizontal and vertical bar graphs,

valves, etc., make your display pages aesthetically pleasing as well as

informative to the operator.

TOUCH-SCREEN
These units are fitted with a continuous resolution resistive touch-screen,

providing an effective resolution of over 200 by 200 cells. This allows touch-

sensitive objects to be placed anywhere on the screen, without restricting your

designs to the coarse grid employed by competitive products. The touch-screen

is fully operable with gloved hands and is specified for up to 5 million operations.

HARDWARE INFORMATION
This bulletin contains a variety of information related to the installation and

operation of the Operator Interface supplied. Ideally, you should read this

document thoroughly before attempting to use the equipment. For information

about the software aspects of the terminal, please consult other documentation.

CONTENTS OF PACKAGE
The Operator Interface is supplied in a packaging box containing the

following...

� The interface terminal itself.

� A NEMA 4/IP65 rated mounting gasket.

� A bag containing panel hardware.

� A Function Key Strip for units with Function Keys.

� This hardware bulletin.

� If any of these items is missing, please contact your supplier

immediately.

COMMON FEATURES FOR GRAPHIC BASED OPERATOR TERMINALS

21

FUNCTION KEY STRIPS
The function keys have clear windows that permit the user to insert labels

appropriate to the process. A formatted page is supplied upon which the user

can enter function names (e.g. RUN, PRINT, etc.). These strips are inserted

from the rear of the panel through slots below the function keys located

underneath the gasket.

Take care that the ink applied will not rub off of the paper, or else blemishes

will be left on the inside of the window. Laminated paper or plastic film can

prove easier to insert than normal photocopier paper. It also heips if the starting

edge of the paper has about 0.25 inches of its corners cut off at a 45 degree

angle.

Note: Add an additional 1.5” to label length to allow for easier insertion and

removal.

POWER SUPPLY REQUIREMENTS
The Operator Interface requires a regulated 15 to 30 VDC power supply rated

at 9.75 W unless otherwise stated on the label.

� The terminal may take as little as 300 mA in certain circumstances, so

be sure that the chosen power supply can operate correctly with this

load. Large switch-mode supplies tend to need a certain minimum load

before they will operate correctly.

In any case, it is very important that the power supply is mounted correctly if

the unit is to operate reliably. A very high proportion of reported problems are

caused by incorrect power supply installation, so please take care to observe the

following points...

� The power supply must be mounted close to the unit, with usually not

more than 6 feet of cable between the supply and the Operator Interface.

Ideally, as short a length as is possible should be used. In particular, the

power supply should not be mounted on the back of the panel when the

Operator Interface is installed in the panel door unless a short cable run

can be achieved.

� The wire used to connect the Operator Interface’s power supply should

be of at least 22 gauge wire. If a longer cable run is used, you should

use even thicker cable. The routing of the cable should be kept away

from large contactors, inverters and other devices which may generate

significant electrical noise.

BATTERY BACKUP ISSUES
The Operator Interface is supplied with a Lithium Battery designed to

maintain the internal memory and real-time clock during power outages.

Assuming the operator interface terminal is powered up for 50% of the time,

this battery should last over 4 years. A “Battery Low” system variable is

available so that the programmer can choose specific action(s) to occur when

the battery voltage drops below its nominal voltage.

It is possible to replace the battery without losing the contents of the Operator

Interface’s memory, but this does not reduce the importance of ensuring that a

copy of the terminal’s configuration is kept readily at hand to allow the terminal

to be re-loaded in the case of mishaps. Please remember that it is not possible to

extract the contents of a terminal for subsequent re-loading, so the importance

of keeping a copy on disk cannot be over stressed.

CHANGING THE BATTERY
To change the internal battery, follow these steps...

� Remove the power and PLC communications connector from the unit.

� Remove the four screws from the rear-cover.

� Remove the cover, ensuring that the right-hand edge is raised first to

avoid fouling the earth stud. You may have to pivot the cover to an

angle of about 30° to achieve this.

� If you wish to avoid losing the terminal’s configuration, reconnect the

power connector and re-apply power. Note that this will require the

panel to be powered-up and, as such, only suitably qualified staff should

carry out this procedure.

� The battery is located in a holder on the main circuit board. This should

be clearly visible. Remove the battery from its holder.

� Place the new battery in the holder. The terminal’s power supply can

now be disconnected, if you re-applied power in the step above.

� Replace the lid, screws and connector by following the above procedure

in reverse. You may like to make a note of the date the battery was

replaced to allow planned maintenance to be carried out.

� If you did not keep the unit powered-up during battery replacement, hold

down the EXIT and MUTE keys on the keyboard and remove and then

re-apply power. This will clear the internal memory and thus the suitable

configuration database should then be re-loaded.

Please note that the old battery must be disposed of in a manner which

complies with your local waste regulations. Also, the battery must not be

disposed of in fire or in a manner whereby it may be damaged and its contents

come into contact with human skin.

INSTALLATION & CONNECTIONS
The unit meets NEMA 4/IP65 requirements for indoor use, when properly

installed. The units are intended to be mounted into an enclosed panel.

INSTALLATION ENVIRONMENT
The unit should be installed in a location that does not exceed the maximum

operating temperature and provides good air circulation. Placing the unit near

devices that generate excessive heat should be avoided.

Continuous exposure to direct sunlight may accelerate the aging process of

the bezel. The bezel should be cleaned only with a soft cloth and neutral soap

product. Do NOT use solvents.

Do not use tools of any kind (screwdrivers, pens, pencils, etc.) to operate the

keypad of the unit.

MOUNTING INSTRUCTIONS
The Operator Interfaces are designed for through-panel mounting. A

neoprene gasket is provided, to enable sealing to NEMA 4/IP65 specification.

The panel cut-out diagram for the model supplied is provided. All mounting

holes should be drilled for 0.14” clearance. Care should be taken to remove any

loose material from the mounting hole to avoid such metal falling into the

Operator Interface itself during installation.

CONNECTING TO A PLC
The Operator Interface is designed to operate with a PLC. A serial

communication connection must be made between the operator interface

terminal and PLC, and the details of this connection vary according to which

PLC is used.

The following section lists the connection details for the PLC to be used .

PLC TYPE
Details on how to connect to most PLCs are available on request from RLC.

CONNECTING TO AN IBM® PC/AT
The Operator Interface is programmed via software running on an IBM

PC/AT or a compatible computer. The connection between the PC/AT and the

operator interface terminal is made via a custom cable provided with the EDICT

Developer’s Kit. The cable is designed for a 9-way serial port. Please contact

your supplier if you require a 25-way version.

PROGRAMMING PORT PIN OUT
The Operator Interface’s programming port is sometimes used to connect

other RS-232 devices, such as printers. The following illustration and table

gives the pin-out of this port to enable such connections to be made.

The above table denotes the pin names of the programming port. When

connecting, the pin name at the programming port is connected to the opposite

of that pin name at the destination device.

22

23

What You Will Need

Operating System
Your machine should be running Windows 3.1 or Windows 95, with the latter being the
recommended operating system for this product. EDICT-97 will not operate with earlier versions
of Windows. If you are using a recent version of Windows NT on an Intel machine, you should be
able to run EDICT-97 without any problems, but this configuration is not supported at this date.

Memory and Disk Space
You should have at least as much memory as is stated as the minimum requirement for your
chosen operating system. Windows 3.1 users should operate in 386 Enhanced mode with a
swap-file enabled, to ensure that virtual memory is available as back-up should it be required,
Windows 95 users do not have to worry about this, as their virtual memory system is managed
automatically.

EDICT-97 itself requires up to 4MB of disk space, and you should allow a further 250KB or so for
every project you intend to create. Remember that Windows may need some temporary disk
space for its own use, and you should always aim to keep 10MB or more space on your system
disk. This is especially true if you intend to print to high resolution output devices like laser
printers.

Other Peripherals
EDICT-97 needs access to a serial port in order to download configuration information to an
operator interface terminal. Remember that Windows does not allow you to unplug a mouse after
the operating system has booted, and then use that serial port for some other purpose. Users
with a single port and a serial mouse will thus have to boot Windows without the mouse installed,
and manage without the mouse when using EDICT-97.

All of the facilities within EDICT-97 can be accessed without the use of a mouse or other pointing
device, but we recommend that you use such a device to help you find your way around the
software. That said, we also suggest that you try and learn the short-cut keys for common
operations, as you will soon find yourself using the software more fluently as a result.

Installing EDICT-97 from a Floppy Disk
EDICT-97 is supplied on three 3½" high density floppy disks. If you are unable to read such
disks, you should consult your distributor about the availability of alternative formats. EDICT-97 is
not copy protected, and you can install any number of copies from a single set of installation
disks. However, your license agreement does not permit the software to be used outside a single
organization, and you should ensure that you do not breach the terms of this agreement.

Installing from Windows 3.1
To install from within Windows 3.1, follow these steps…

• Place Disk 1 in the appropriate drive, hereinafter assumed to be drive A

• Select the Run option from the File menu of the Program Manager

• Type a: \setup into the dialog box, and press the ENTER key.
Follow the instructions provided by the installation program.

24

Installing from Windows 95
To install from within Windows 95, follow these steps…

• Place Disk 1 in the appropriate drive, hereinafter assumed to be drive A.

• Select the Run command from the menu on the Start button.

• Type a: \setup into the dialog box, and press the ENTER key.

• Follow the instructions provided by the installation program.

Connecting your PC to your HMI
Once you have successfully installed EDICT-97 software to your computer, you will need to
connect your PC to the Paradigm HMI product you have purchased. The PC to Paradigm
connection is easily made via the programming cable (p/n P890301Z). This programming cable
was included in your EDICT-97 development kit. Additional cables may be purchased from your
Red Lion Controls distributor.

Using EDICT-97
Double click the EDICT-97 icon on your computer. The following screen should appear on your
PC screen.

 At start up, EDICT-97 will give the user 4 options. They are Run the Quick Start wizard, Create
an empty database, Open an existing database or Re-open the last database configured in
EDICT-97.

25

A Quick Start Guide for writing an EDICT-97 database

Use the Quick Start Wizard that appears when you start EDICT-97.
 (Make sure you are using the correct Paradigm/PLC communication cable for the PLC selected)
This will allow you to select the HMI panel you will be using as well as setting up your communication options.

Select HMI
panel

Select protocol of device you will
be communicating with.

Select Comms port.

Set PLC
Address

26

To complete the communication link Jump to CommsBlocks and select the registers you are accessing in the device
you have selected..

To confirm that your communications are properly configured Jump to Display Pages and open Page1.
Next insert the following on Page 1.

Select Insert Integer Value from the EDICT-97 Toolbar.

 You can use the drop down menu to select Named Data Variables or System Variables.

Select registers you
want to access in
the PLC.

The Named Data wizard
allows you allows you to
rename the registers.

Now the PLC
registers D0000
and D0001 can
be referred to as
pressure1 and
pressure2
respectively.

27

CommsError: A system variable that can be inserted as an Integer Value of a display page. Use the <16>0000h
hexadecimal template for this variable. A display value on the display page of 0000h for this field indicates no problem
with communication. The least significant bit for this variable going high indicates a Communication Error. The next
significant bit going high indicates that the Error is with Device 1(0003h). A communication Error with Device 2 will
result in a displayed value of 0005h for this field,etc. See Page D7 of the EDICT-97 manual for details on
Troubleshooting Communications.

It is suggested that you do not proceed beyond this point until you have established communications between the PLC
and your Paradigm HMI panel.

EDICT-97 is an event driven software program.
Designers can choose from a long list of events (See page 54 of the EDICT-97 Software manual) to provide the
desired action (See Section A of the EDICT-97 Software manual for details).

Events: There are 2 types of events in EDICT-97. They are local events and global events.

Mapped to PLC registers System Variable:CommsError

Named Data Variables

System Variables

Drop-down Menu

28

Local events (and their programmed Actions) occur only when the display page they are programmed on is currently
displayed on the programmers HMI.

In the example above Soft-key 1 pressed (type directly or use the Event pull down window) will cause the HMI panel
to Go to Page 2. The Action can be typed directly into the Action window or the Action Wizard will help the
programmer select the desired action when the window is expanded. This Event will cause this Action to occur on this
display page only.

Global events (and their programmed Actions) occur regardless of the page currently displayed on the programmers
HMI. To create a Global event Jump to Global Events.

In the example above PREV key pressed (type directly or use the Event pull down window) will cause the HMI panell
to The Previously displayed page regardless of the page currently displayed on the HMI.
Note: For an explanation on Enable and Routing usage see the EDICT-97 Software manual.

2) This section deals with using Alarms in your database.

Jump to Alarm Scanner
Note: for this example 2 variables were used zone1 and zone2. These variables are reading temperature values from
a Red Lion Controls PID temperature controller.

Alarm names and the Expressions which define the alarms are configured in the Alarm Scanner category of EDICT-97.
For this example both zone1 and zone2 trigger above 300. The Shut down warning alarm will trigger when either
zone1 or zone2 is above 400. (“||” is the logical or operator. See operators in Section A of the EDICT-97 software
manual.)

29

To view the alarms create a display page and edit the page properties so that this page is an alarm viewer.

Use Global events to program the Mute Key (Mute Siren()) and Alarms Key (GotoPage(Alarms)) to mute and view
alarms.

3) This section deals with using the Trigger Table in your database.

Jump to the Trigger Table

The expressions in theTrigger table are evaluated after every Comms Update. If the expression is “True” then the
programmed action is triggered. For the example above the number will be dialed when the variable pressure1 is
greater than 300.

4) This section deals with using the Schedule Table in your database.

Jump to the Schedule Table

30

The Schedule table uses EDICT-97’s real time clock to schedule programmed actions.
For the previous example the variable zone1 will be loaded with the value of 100 on Monday 7:00AM.
In addition the report “HourlyRate” will be printed every weekday at the top of each hour.
See the EDICT-97 software programming manual for more details.

Using the Condition Wizard…
In this example, a variable, called Temperature, will be evaluated to determine if it is less than or equal to 100. First,
the expansion arrow is selected in the expression column of the Trigger Table.

The Condition Wizard appears (if the wizard introduction is turn on, this screen will be first, click Next to get to the
following screen)…

A fixed logical state allows the insertion of TRUE or FALSE in the expression column. TRUE is equal to a value of 1
and FALSE a value of 0. TRUE would cause a continuous action, whereas FALSE would cause the action to never
occur.

A comparison between two values executes an evaluation. As per our example, this selection would allow us to
insert Temperature <= 100. Then if the temperature falls to 100 degrees or below, the action will occur.

A bit test performed on a value will evaluate a specified bit of a value. The user has the choice to evaluate the bit as
on or off. Whenever the condition is true, the action will be performed.

A logical combination of two conditions is used for inserting multiple condition to evaluate before an action will
occur. To expand our example, if we wanted to have the action occur when the temperature falls to 100 or below or
when the pressure falls below 50 psi this selection would allow us to create and insert the syntax needed. The syntax
would look like the following when finished: Temperature <= 100 || Pressure < 50.

31

Some other expression allows the insertion of many types of variables. These include Direct PLC references,
Comms Blocks items, data variables, bits, constants, math functions (add, subtract, multiply, divide, etc), and Edict
function calls.

As mentioned, this example calls for selecting A comparison between two values. Click Next.

The following screen allows for the creation of our desired expression. In this case, Temperature <= 100.

The Pick buttons aid in selecting Direct PLC references, Comms Blocks items, data variables, bits, constants, math
functions (add, subtract, multiply, divide, etc), and Edict function calls for each operand in the expression. Our first
value, or operand, will be a data variable called Temperature. The second is a constant, 100. Our operator selection is
for Is Less Than or Equal To. The following should be how this screen should look before clicking Next.

Clicking Next shows the Wizard Summary, reiterating the components and the expression to be created. Clicking Done
will insert the expression in the Trigger Table.

32

5) This section deals with using the Selection Table in your database.

Jump to the Selection Table

For this example Page1, Page2 and Page6 will be displayed if the value of “Inputs” is 1, 2 or 6 respectively. Page3,
Page4 or Page5 will be displayed if the value of “Inputs” is 120, 130 or 140 respectively. Any register can be used as
the Control value register. See the EDICT-97 software programming manual for more details.

6) This section deals with using the Event Logs in your database.

Jump to the Events Logs

The control value is the register that controls
which display page is on the screen of the
HMI. “Inputs” is the named data variable for
the input register of this PLC.

33

The EDICT-97 Event Log allows the programmer to keep a record of events happening (time of event, start time of
event and end time of event). In the preceding example the event “zone1 in range” is activated when the zone1
temperature is between 240 and 250 F. The second event “pressure balance” occurs when the value of pressure1 is
equal to pressure2. To view the events log Jump to a display page and set the page properties to Event Viewer.

7) This section deals with inserting animated text on a display page.

Jump to a Display Page

See below for the Quad Text, Message Text and Decode Text windows for this application.

34

Quad Text Example

Message text from Local Message table.
This message table is valid only on this
display page. EDICT-97 also has a
Global Message Table. This message
table can be accessed from any display
page in your database. To create a
global message table Jump to

Message Table.

Decode Text example. The Decode text table
will evaluate the conditions from top to bottom
(1 to n). The text for the first true condition will
be displayed.

35

Note: The Wizard will configure the communication settings for one device. If you are
communicating with more than one device, you will need to configure CommsPorts and
CommsDevices for the additional devices.

Configuring Without the Quick Start Wizard
The first step to setting up your database requires that you specify the Paradigm unit you are
communicating with.
From the top line on your EDICT-97 software choose File, and then choose Terminal Selection.
The following screen will appear on your PC.

 Scroll down and choose the Paradigm unit you are communicating with and hit Enter.

The next step involves choosing the serial communication port on your PC. From the top line of
your EDICT-97 software choose Link, then choose Options and the following screen should
appear.

Chose the appropriate serial port on your PC and hit Enter.

36

Downloading
The process of sending a configuration database to an operator terminal is known as
downloading. EDICT-97 uses a technique known as “incremental download” to avoid sending
data which has not changed since the download was last performed. This technique results in
greatly reduced download times, and makes it much easier for you to perform small modifications
to a database and then to test the results.
To download the current database to a terminal, connect a programmable cable from a spare
COM port on your machine to the programming port of the terminal. You should check that
EDICT-97 is configured to use the correct COM port by means of the “Options” command on the
“Link” menu. You can then send the database by selecting the “Update” command from the same
menu, or by clicking on the “lightning-bolt” button on the toolbar. The same result can be
achieved from the keyboard by pressing the F9 key.
EDICT-97 will sometimes send the entire database if it finds that the database in the terminal
makes incremental download impossible. You can force EDICT-97 to do this by using the “Send”
command instead of the “Update” command, but this should not be necessary unless you want
completely to clear the contents of terminal. All Comms blocks and other internal storage areas
are set to zero when a complete download is performed.
If you find you are unable to download to a terminal, it is possible that the programming port of
the device has been configured for use by a Comms driver and is thus no longer available for
programming purposes. The designer of the terminal’s database should have provided a way to

stop the system and allowing programming, typically by calling the “StopSystem” function in

response to some key sequence. If this facility is not available, you will have to clear the
terminal’s memory before you can download. Since clearing the memory negates the point of the

incremental download facility, you should always try to provide a way of calling “StopSystem” if

circumstances make it necessary.

You are now ready to create a Test Database
To test the programming link between your PC and the Paradigm unit, you need to create a
simple test database that you can download. Choose Display Pages from the Category column
of the EDICT-97 Software. After you choose Display Pages, the following screen will appear.

Notice that an Item list appears on the right hand side of your software screen. Choose Page 1
and the following screen will appear.

37

The blinking cursor shows your position on the page. Type in some sample text like “hello”.

To download the test database, hit the F9 function key at the top of your keyboard or click the
lightning bolt icon on your toolbar (next to the question mark). A successful download will result in
hello being displayed on your HMI display. If you were not successful, check for proper Com Port
designation (Link then Options).

A QUICK START OF EDICT-97

The Database Contents Window

As you will have noticed while preparing your test database, EDICT-97 starts up by displaying the
Database Contents window. This window lists the various items that make up the database, and
is used to select the item with which you wish to work. It can also be used to manipulate the lists
use to store named items, such as display pages and user programs. Pressing the CTRL+1 key
combination at any time will close all other windows, and return you to the database contents
window.

The left-hand half of the window contains an icon for each area of the database. If the selected
icon refers to a list of named items, the right-hand half of the window will show the list of items,
with the current selection highlighted. Double-clicking in either half of the window will open the
item in question, as will pressing the Enter key. You can move between the sections of the
window by using the Left and Right keys. Navigation within either of the lists is performed in the
usual way, using the arrow keys or the mouse. When working with the icon list, you may also
press the underlined character of a given entry to select that entry. Each entry has a unique letter
associated with it, and these are well worth learning.

38

The 19 Categories (sections) in the Database Contents Window:

Display Pages
This is where each display page is created. A display page is what appears on your HMI at any
particular time. A display page may contain text, messages, data (both read and read/write),
time/date and results of calculations performed in EDICT-97. Typical user applications can
contain up to several hundred display pages.

Bitmap Images (Graphic units)
For importing Bitmaps into EDICT-97 which will be displayed on our monochrome and color
Graphic units. Bitmaps are displayed on the Graphics or Bitmap layer of a display page.

Character Fonts (Graphic units)
For importing Fonts into EDICT-97 which will be displayed on our monochrome and color Graphic
units. Imported Fonts are displayed on the Graphics layer of a display page.

Global Events
There are events that occur (e.g. Function 1 Key being pushed on your HMI) that can cause a
desired action (e.g. Go to Previous Page). Global Events are events that give the same desired
action regardless of page. Local events (set up in Display Pages) give the desired action only on
that specific page.

SoftKey Menus
EDICT-97 has the ability to create Soft Key menus. These menus will slide out on a display page
when an event triggers the action ShowMenu(). The number of Soft Key Menus that can be
created is limited only by the amount of memory available in the designer’s database.

Security System
EDICT-97 features a fully configurable, hierarchical user specific access control scheme. Access
can be controlled at both the page level and at the animation level.

Comms Ports
There are 2 or 3 communication ports (2-RS232; 1-RS-485) in every Red Lion Controls‘ HMI.
This section is used to set up their designated function. For example, the RS485 port may be
designated for Allen Bradley SLC PLC.

Comms Devices
In this section you can program up to 29 Comms Devices.This allows a great deal of flexibility
when setting up your communication schemes. For example Port 3 (RS485) may be set for the
Red Lion Controls driver. If you had 10 Red Lion Controls instruments with RS485
communication ports, you could easily set up Device1 through Device10 to access each of these
instruments.

39

Comms Blocks
EDICT-97 allows you to define up to 26 communications blocks, each of which is given a name
comprising a single letter. Each block may be used to transfer a given region of PLC memory to
or from the HMI. A block has a number of properties, which are defined using the table within the
Comms Blocks window.
 e.g. Comm Block A[] may be set up for 2 counter values from a PLC . A[0] = value of counter
1(value =200), A[1]= value of counter 2 (value =400)

Named Data
EDICT-97 allows you to apply names to either existing expressions or to internal memory
locations. Using the Named Data section declares the named data item globally. It can also be
set up as a local named data item in Display Page section. Named data items are divided into
four categories: Variable, Constant, Formula and Data File.
e.g. of variable “AVG”
AVG: =(A[1] +A[2])/2 Using the counter values above AVG would return a value of 300
(i.e.(200+400)/2 =300)

Alarm Scanner
EDICT-97 contains an alarm scanner, which continually monitors up to 500 alarm points defined
in the alarm table. Each alarm point typically has a triggering expression, the state of which
determines the conditions under which the alarm will be triggered. You can also indicate the
mechanism to be used to accept each alarm, and whether a given alarm point will activate the
HMI’s internal sounder or not. Priority assignment allows for greater flexibility.

Trigger Table
EDICT-97’s trigger scanner continually scans up to 500 entries in the trigger table. Each entry
has a controlling expression and an edge type. When the expression changes in the direction
specified by the edge type, EDICT-97 will execute the associated action. The action may cause a
new page to be displayed, or may perhaps change a value in a remote device.

Schedule Table
EDICT-97’s real-time schedule continually scans up to 500 entries in the schedule table,
matching the conditions described in each entry against the current time and day of the week.
When all of the specified conditions are met, the action associated with that entry is executed.
This action may select a new display page, change a value in a remote device, or perhaps print a
shift report.

Selection Table
This window is used to edit the properties of the selection table, which allows a remote PLC or
similar device to force a particular page to be displayed. The table will not be displayed until you
have edited the table properties to indicate which data value should be used to select a given
page. To do this, select the “Properties” command from the “Item” menu, and edit the “Control
Value” property. The Selection Table contains 500 points, each of which has a number of
properties, represented by the columns of the table. Please follow the link below for information
about the properties of each selection table entry.

Message Table
EDICT-97 contains a global message table capable of storing up to 500 messages.

40

Data Logger (Graphic units)
The Data Logger allows designers to display a graphical trend of variables versus time.
Up to 500 variables can be logged.

Event Logs
EDICT-97 contains an Event Log, which continually monitors up to 500 Events defined in the
Event Logs table. Each Event point typically has a triggering expression, the state of which
determines the conditions under which the Event will be triggered.

Printed Reports
The printed report editor is used to define full-page reports, which can then be sent to a printer
attached to one of the terminal’s Comms ports. Each report may contain a combination of static
text and animation items.

Programs
To provide the ultimate in flexibility, EDICT-97 contains a programming language, similar to the
“C” and “Java” languages used in so many applications. Each program is equivalent to single
function within these languages, and may perform anything from a simple list of actions to a
complex combination of decision-making or loop constructions. Do not be too alarmed if the
prospect of writing programs in either of these languages seems rather too much to handle, as
most applications can be handled with either no programming, or with very simple programs
which simply comprise action lists.

41

Working with EDICT-97

Section 1 : Display Pages

Display pages are used to define what should be shown on the operator terminal’s display at any
given time. Each page may contain a combination of static text and animation items. There are
various types of animation items, each capable of representing plant or internal data in a
specified way. Certain animation items can be configured for data entry, allowing the operator to
modify plant settings or internal data items.
Each display page also has an associated event map, which specifies what should happen if a
given event occurs when the page is displayed. As an example, an event is generated when a
key is pressed, and an entry in the event map can be used to change data or to select another
page in response to that event. Events also occur in response to changes within EDICT-97’s
internal state, and can be used to customize the terminal’s behavior.

The Tool Bar Icons

Item properties

Next or Previous page

 Edit/View layers
 (graphic units)

 Zoom
Control

Grid options

Center text

Insert Integer

Insert text

Insert Time

Jump to categories in
EDICT-97

42

Insert Integer Value

Choose this Icon and the following appears

Property Description

Value An integer expression giving the value to be displayed. If the field is
set to “read-only” operation, any expression can be used, including
those involving scaling or other processing. If “Data Entry” mode is
selected, a writable value must be entered.

Transform An optional transform to be performed on the data. Before the data
value is displayed, it will be transformed using the information in this
property. This can be used, for example, to scale values from the PLC
to engineering units. Note that the “Value” property is always
evaluated as a 32-bit number, and transforms that manipulate bits will
thus behave as if they have been passed a 32-bit argument, even if
the underlying data is really a 16-bit value.

Template A picture of how the number should be formatted. You should use this
field to select the number of decimal places required and the number
base to be used. You may either select a value from the list, or enter a
custom setting of your own.

Mode Whether or not data entry is to be enabled. If this property is set to
“read-only”, the animation item will simply display the expression given
by the “Value” property. Selecting “Data Entry” will allow the operator
to enter a new value by using the numeric keys or the Raise and
Lower buttons.

Data Types

The compiler used within EDICT-97 supports a number of data types, including a wide variety of
integer types, a floating point type and a dynamic string type. The floating point type uses 32-bit
IEEE representation to hold values with an accuracy of around 7 significant figures. Stored string
variables can be up to 256 characters in length, although intermediate values may exceed this
length considerably. The table below lists the integer data types, together with the range of value
each can hold.

Type Range

16-bit Unsigned Value 0 to 65535
32-bit Unsigned Value 0 to 4294967295
16-bit Signed Value -32768 to +32767
32-bit Signed Value -2147483648 to +2147483647

43

In general, EDICT-97 will look after conversions between types as and when required by the
context, and will automatically “promote” a data value to the next larger type should the current
type prove too small to hold an intermediate value during a calculation. If you need to perform an
explicit type conversion, you can use what is known as a type cast sequence.

The best way to get an idea how data is entered is to do some simple examples.

Example: Adding an Integer Animation Item

Step 1) If for example you wanted to insert a 2 digit Read/Write Integer value on your display
page. You would enter the following.

 Note: This value is designated to go into CommBlock A[0].

Step 2. In addition, I want to restrict the value of the number entered to be in from 0 to 20. To
accomplish this, choose DataEntry, and enter the following (Min =0, Max =20).

Data Entry Properties

When a field is enabled for data entry, the properties contained within the second tab of the
associated dialog box may be used to control how data entry will occur. The table below lists
these properties, not all of which will be available for all animation types.

44

Property Description

Minimum The minimum value permitted. If an expression is entered, the value

entered by the operator must not be less than the value of the
expression. If an out of range value is entered, the “Out of Range
Value Entered” event will be generated.

Maximum The maximum value permitted. If an expression is entered, the value
entered by the operator must be not be more than the value of the
expression. If an out of range value is entered, the “Out of Range
Value Entered” event will be generated.

Step The step used for the Raise and Lower keys. This field is used to
control how much the value will change by when the Raise and Lower
keys are used for data entry. Leaving the field at its default value will
produce a step of one, while entering a zero value will effectively
disable these keys.

Default The default value for the field. If an expression is entered, the field will
be loaded with the value of that expression before data entry is
commenced. If the property is left at its default value, the field will
contain whatever was previously held in the expression used to define
its “Value” property.

Enable Whether or not data entry is permitted. If an expression is entered for
this property, it must evaluate to a non-zero value if data entry is to be
allowed. If the expression is zero, the field will operate as if the “Mode”
setting had been set to “read-only”. The field is typically used for user
access control.

Access Level Used with the System Security feature to control user access.
Touch Entry See touch units in Section E.

Animation Default Control…

The Animation Defaults allows the user to determine the default template that will automatically
appear when inserting a signed or unsigned 16-bit or 32-bit integer. Click on Tools from the main
menu. Then choose Options and then Animation Defaults (see below).

As seen, the default templates can be set, as well as, the default min and max. Here a 16-bit
signed integer will show a negative sign if it is below zero and will have a range from –32768 to
32767.

45

Before you download the database, you need to set up CommBlock A. Minimize Display Pages,
maximize Contents, and choose CommBlocks.

By entering an arbitrary value of size 10 for Comms Block A, this memory location is
automatically set up for internal. In other words, memory locations A[0] to……..A[9] are
designated as Internal memory locations that we can Read/Write data to. Hit F9 or click the
download icon from the toolbar to make these changes to your HMI.

When you use the raise, lower or numeric Entry keys, you can only enter numbers from 0 to 20
into this Integer field.
Connecting Your HMI to a PLC: At this point you may want to connect your HMI to a PLC to
perform simple tasks like turning a bit on and off. For an example, turn to page 2 of Section D of
this manual.

Direct PLC References

Programmers can use Direct PLC References in lieu of the CommsBlock mapping feature of
EDICT-97. The following is a step by step example for using Direct PLC references in a new
database via the Expression Wizard.

Insert an Integer Value on a
display page.

Click here to activate the
Expression Wizard.

46

The Expression Wizard
helps the programmer select
the type of device…..

The Expression Wizard is
started.

The Expression Wizard allows
the programmer to chose Direct
PLC references.

47

Prompts the choice of port
on the panel that will be
used to communicate with
the target device….

Prompts for the
address of the
target device….

Prompts for the
register to be
accessed in the target
device…..

48

The Wizard Summarizes
the choices made during
the Expression Wizard.

49

To view the Direct PLC references select Show Auto Blocks from the Tools Menu.

Example 2: Inserting Multiple Integer Animation Items

Return to Page1

Position your blinking cursor on Page1 so you can add another Integer value. Repeat steps 1 and
2 above (use A[2] instead of A[1]) . Reposition your blinking cursor and repeat steps 1 and 2
again (use A[3] instead of A[2]. Your display page should look like this…

Inserted Integer on display
page after the programmer
uses the Expression Wizard.

50

Hit F9 or choose the download Icon from the toolbar to update your HMI.

Use the numeric keys to change display values and hit the Enter key to move to the next field.
The Prev and Next keys on your HMI move you from one data entry field to another. There are
other modes to enter data and they are accessed by choosing Page, then Properties, and then

Data Entry. The following options are available when you choose Page /Properties.

Display Page Properties

This dialog box is used to edit the properties of the current display page. Some of these
properties can be left as “Default”, in which case the default value defined by editing the
properties (under Edit on the Menu line) of the Display Pages icon in the database contents
window will apply.

General Properties
The table below lists the general properties and their effects…

Property Description

Format The format of the display page. If the currently selected terminal
supports more than one page format, the drop-down list can be used
to select the format for this page. You will be warned if changing the
format results in deleting animation items.

Foreground Refers to graphic units (See Section E).

Background Refers to graphic units (See Section E).
Transitions Refers to graphic units (See Section E).
Bitmap The background bitmap for the page. This option is used to select the

background bitmap for terminals, which support graphical page
formats. (See Section E).

Timeout The page timeout in seconds. This value specifies the number of
seconds without a key press after which the keyboard timeout event
will be processed. The event will not actually cause anything to
happen unless an event map states otherwise.

Category The page category. This value is used to indicate that a page should
perform a special system function. If a non-default value is selected,
the system will change the default event handling for that page.

51

From the Menu choose Page, then Properties.

Display Page Categories

The “Category” property of a display page is used to indicate what type of page should be
displayed. The default setting produces an empty page upon which you can place your own
animation items, and with very basic default event handling. Other settings cause the system to
take over drawing the page and to provide more complex default event processing. The effect of
this is to implement special system pages, such as those used to view active alarms, to set the
real-time clock or to view the system status.

Category Description

Alarm Viewer Lists the currently active alarms, and lets you accept them.

Set Clock Displays the real-time clock, and lets you modify its setting.

System Status Display technical internal system status information

Event Viewer Displays the contents of an Event Log.

Trend Viewer Displays a graphical trend. See Section E

System Login System Login page.

Touch Calibration Refers to touch sensitive HMI’s. Touch calibration page.

Touch Cleaning Refers to touch sensitive HMI’s. Touch cleaning page.

You can customize the exact behavior of one of these system pages by placing entries in the
local event map of the page. If you want the default system behavior to be skipped for a given
event, you can use the “Routing” column to indicate that the system should not be allowed to
process the event once your action has been executed. Be careful when overriding system event
handling, or you may find that the page no longer behaves as you would expect.
The current version of EDICT-97 does not allow you to modify what is displayed upon a system
page, and any text or animation items entered via the display editor will be ignored and replaced
with the system’s own text. Later versions will allow you to modify the system’s output and to add
extra information of your own. For more information on the availability of this feature, please
contact your supplier.

52

Data Entry Properties
The table below lists the data entry properties and their effects…

Property Description

Navigation Mode How the cursor keys should behave. If “Linear” is selected, the keys
will move the cursor from one end of the list to the other, stopping at
each end. “Cyclic” will cause the cursor to wrap-around, suppressing
some events in the process.

ENTER Function How the Enter key should behave. If “Move” is selected, the key will
save the data and move on to the next field. Selecting “Commit” will
simply save the data, and leave the cursor on the current field until a
cursor key is used to move it.

Update Mode How the display will be updated. If “Limited” is selected, other
animation fields will only be updated when the entry field changes or a
new field is selected. “Normal” indicates that the display should also
update after each Comms scan.

Entry Sequence How the entry order is calculated. This field is used to select how
EDICT-97 sorts data entry fields when the fields are arranged in a grid
pattern. You can indicate that you wish to scan the data by rows or by
columns, as required by your application.

Enable Whether or not data entry is permitted. If an expression is entered for
this property, it must evaluate to a non-zero value if data entry is to be
allowed. If the expression is zero, the field will operate as if the “Mode”
setting had been set to “read-only”. The field is typically used for user
access control.

Touch Entry Refers to touch sensitive HMIs. See Section E.

Note that selecting a “Normal” display update may cause the cursor to flicker somewhat on some
terminals, as the display driver has to turn off the cursor when the other fields are being updated.
You should not select this setting unless you need live data on a data entry page.

Default Page Properties

This dialog box is used to edit the default properties of all display pages. Each value can be
overridden using the properties dialog box for the page in question. If you need to set a property
for most of your pages, you should do so using this dialog box and then modify the default values
on the pages where other settings are required. To access this Global set up box, go to the
Database Contents page and choose Edit, then Properties.

Example 3: Using Events and Actions(Functions)
Return to Page1 and choose Page, then Insert and click OK to Page2.

53

Now that you have 2 Pages, you need a way to move from 1 page to another. You will remember
from the Panel diagram on Page 1 of this manual that your HMI has a combination of Soft and
Function Keys. In this example SoftKeys 1 and 2 will be used for this purpose. Page1 should look
like ..

Notice that midway down the page Soft-key 1 pressed is entered under Event and
GotoPage(Page2) is entered for Action. Now hit on your toolbar to go to page 2.

Notice that Soft-key 2 pressed is entered for Event 1 and GotoPrevious() is entered for Action.
You should also enter some text to distinguish which page you are viewing on your HMI. Hit F9 or
hit the download Icon on your toolbar, Now Softkey 1 and 2 on your HMI should toggle you
between the two pages. This example introduces the use of Events and Action (Functions).
Simply stated Events are things that happen (like a SoftKey being pressed) and Actions are
things that are programmed to happen after a specific Event happens. The following Event Index
and Function Index are also available as drop down Windows during programming.

Event Handling

The event handling system is the key to how EDICT-97 operates. It is used to define what should
happen when a given event occurs. Events are generated whenever the operator presses a key
on the operator terminal, or in response to certain internal changes within EDICT-97. By
assigning actions to events, you can modify just about any aspect of the terminal’s behavior in a
very flexible way.
The relationship between events and actions is defined using event maps. Each event map lists
the events to be processed, and the actions to be performed in response to those events. The
global event map defines how events should be processed, no matter which page is currently
displayed. Each page also has its own event map, used to define how events should be
processed when that page is selected. This page-specific event map can be used to override
global event map entries if required.

54

Events Index
The following table lists the events recognized by EDICT-97, the associated abbreviation, and
any associated value held in the “Param” system variable. Note that this variable contains the
parameter only during the processing of the event in question, and so you will not be able to
display it on a page using an animation item. If you want to examine the parameter in that way,
store it in a variable in response to the event, and display that variable.

Event Abbreviation Parameter

Soft-Key Pressed SK1, SK2… Undefined.

Function Key Pressed F1, F2… Undefined.

Exit Key Pressed EXIT Undefined.

Next Key Pressed NEXT Undefined.

Prev Key Pressed PREV Undefined.

Raise Key Pressed RAISE Undefined.

Lower Key Pressed LOWER Undefined.

Enter Key Pressed ENTER Undefined.

Delete Key Pressed DELETE Undefined.

Menu Key Pressed MENU Undefined.

Mute Key Pressed MUTE Undefined.

Alarms Key Pressed ALARMS Undefined.

Numeric Key Pressed NUM Value of Key.

Touch Screen Pressed TOUCH Undefined.

Early Initialization
(Before comms are started)

EARLY Undefined.

Keyboard Timeout TIMEOUT Timeout in Seconds.

System Initialized INIT Undefined.

Page Selected SEL Undefined.

Page Removed REM Undefined.

Page Update Start PAINT1 Undefined.

Page Update End PAINT2 Undefined.

Out Of Range Value RANGE Undefined.

One Second Tick ONE Undefined.

Comms Update UPDATE Undefined.

Comms Error ERROR Comms Error Flags.

New Field Selected FIELD Entry Field Index.

Tab Past First Field FIRST Undefined.

Tab Past Last Field LAST Undefined.

All Input Complete ALL Undefined.

Any Key Pressed ANY Keyboard Code.

User Generated Event USER User Parameter.

55

Alarm Activate ALARM Alarm Index.

Alarm Accepted ACCEPT Alarm Index.

Alarm Cleared CLEAR Alarm Index.

Incoming Connection INCOMING Port Number.

New Link Established CONNECT Port Number.

Existing Link Broken BROKEN Port Number.

Login Successful LOGIN Undefined.

Login Failed FAILED Undefined.

User Logged Off LOGOFF Undefined.

User Timeout USERT Timeout in Seconds.

Page Access Failed ACCESS Undefined.

Notes

1. “Key Released” codes are formed from the base abbreviation plus the letter “R”.
2. “Auto Repeat” codes are formed from the base abbreviation plus the letter “A”.
3. Where the parameter is “Undefined”, you should not assume a value of zero.

The Action Builder
The Action Builder dialog box is accessed by clicking on the right-pointing arrow within an action
field, or by using the Shift+F2 key combination. The dialog box contains a list of functions, which
may be used within an action, together with a section to assist you in defining the arguments of
the function you have selected.
You should select the required function from the list on the left-hand side of the dialog box, and
examine the “Syntax” section to see what arguments are required. The three boxes on the right-
hand side can then be used to enter the arguments. If the argument is the name of some item
within the database, EDICT-97 will fill the associated drop-down list with the names of the items
of the correct type. Entering the name, which does not exist, will produce a prompt as to whether
or not a corresponding item should be created.
The “Details” button can be used to display a help page concerning the currently selected
function. This page will explain what the function does, what arguments it takes, and give a
simple example of the function in use. It will also describe any things to watch out for when using
the function, and provide links to related functions.

Function Index (See Section A for further details on each Function)

Active Functions
The table below lists functions which can be used within actions…

AcceptAlarm AcceptAll Beep ClearRx

ClearTx CopyData Dispatch Fill

FlipEntrySign GotoPage GotoPrevious HoldTx

MuteSiren PostEvent PrintFormFeed PrintMessage

PrintNewLine PrintReport PrintString PrintTimeStamp

56

ReadBlock Run SerialPrint SerialRead

SerialWrite SetBreak SetCommsTask SetRTS

SetTimer SirenOn Sleep StopSystem

TriggerAlarm UseAutoEnables UseHalfDuplex WriteBlock

Passive Functions
The table below lists functions which can be used within expressions…

Abs CallFloat CallInt CallLong

CallString Format GetTimer IsOnLine

Left Len HexVal MakeChar

Max Mean Mid Min

PopDev Random Right Sgn

Sqrt StdDev Val

Inserting Animation Items

Animation Items

Animation items are used to put live data on to a display page or a printed report. They are
placed on the page by using the various options under the “Insert” menu. The table below lists the
various animation items that EDICT-97 supports, together with an indication as to which support
data entry when used on display pages…

Name Description Data Entry

Integer Value Displays an integer value. Yes.

Real Number Displays a floating point value. No.

Status Text Displays one of two strings. Yes.

Quad Text Displays one of four strings. Yes.

Message Text Displays a string from a numbered list. Yes.

Decode Text Displays a string from a condition list. No.

General Text Displays a general string expression. No.

Bar Graph Displays a horizontal bar graph. Yes.

Indicator Displays a on-off graphics indicator Yes.

Time / Date Displays the current time and/or date. No.

57

Return to Page 2 in your EDICT-97 file. On line 2 Insert Integer from your Toolbar (Make
it:Value A[4], Template 00, Mode Data Entry) and after several spaces, choose Insert Status
Text from your Toolbar (or Insert/Text/Status from your Menu)

Use your cursor and make the above changes to the Insert Status Text Window.
The text on your HMI will be “Under 10” when the Integer value A[4] is under 10, and the text will
be “ 10 or Over “ when the Integer value of A[4] is 10 or over. Click OK and download to your
HMI.

Status Text Animation Item

The animation item is used to display one of a pair of text strings, based upon the logical value of
an expression. For example, it can be used to display the status of a single bit, or to display a
string based upon whether a numeric value is over a certain limit. This field can be used for
display, and also for data entry. Data entry is not available when working with printed reports.
The table below lists the properties of this animation item…

Property Description

Value An integer expression used to select the text to be displayed. If the
field is set to “read-only” operation, any expression can be used. If
“Data Entry” mode is selected, a writable value must be entered. Note
that only the truth or otherwise of the expression is considered, with
any non-zero value being considered true.

ON Text The text to display when “Value” is true.

OFF Text The text to display when “Value” is false.

Mode Whether or not data entry is to be enabled. If this property is set to
“read-only”, the animation item will simply display the string selected
by the “Value” property. Selecting “Data Entry” will allow the operator
to change the value of the field, using the Raise and Lower buttons.

In addition to Status Text Animation Items there are also: Quad Text Animation Items, Message
Text Animation Items, DecodeText Animation Items, General Text Animation Items, Horizontal
Bar Animation Items, Indicator Animation Items and Time and Date Animation Items.

58

Quad Text Animation Item

The animation item is used to display one of four text strings, based upon the value of the bottom
two bits of an expression. It is often used to display the status of a three way valve, based upon
the limit switches at either end of its travel. This field can be used for display, and also for data
entry. Data entry is not available when working with printed reports.
The table below lists the properties of this animation item…

Property Description

Value An integer expression used to select the text to be displayed. If the
field is set to “read-only” operation, any expression can be used and
the bottom two bits will be considered when selecting the string to be
displayed. If “Data Entry” mode is selected, a writeable value must be
entered and a value of from 0 to 3 will be written to the expression,
with the other bits being set to zero.

Text 0 The text to display when the bottom bits of “Value” are 00.

Text 1 The text to display when the bottom bits of “Value” are 01.

Text 2 The text to display when the bottom bits of “Value” are 10.

Text 3 The text to display when the bottom bits of “Value” are 11.

Mode Whether or not data entry is to be enabled. If this property is set to
“read-only”, the animation item will simply display the string selected
by the “Value” property. Selecting “Data Entry” will allow the operator
to change the value of the field, using the Raise and Lower buttons.

Message Text Animation Item

This animation item is used to display a text string chosen from the message table, with the
selection being based upon the value of an expression. You can select from either the global
message table, or a table local to a given animation item. This field can be used for display, and
also for data entry. Data entry is not available when working with printed reports.
The table below lists the properties of this animation item…

Property Description

Value An integer expression used to define the number of the message to be
displayed. If the field is set to “read-only” operation, any expression
can be used. If “Data Entry” mode is selected, a writable value must
be entered.

Base The message to show when “Value” evaluates to zero. Leaving this
property at “Default” will result in an invalid message being selected in
such circumstances, with the valid messages starting when “Value” is
one. This field is used to introduce an offset into the message
selection process, without having to make “Value” into a non-writable
value by including the offset within that expression. It is rarely used
with a local message table.

Table The message table to used. If you leave this property set to “Global”,
the message will be selected from the global message table.
Expanding the field allows you to create a message table local to this
animation field. This can make life easier sometimes, but can be
wasteful of memory and harder to maintain if the same table is to be
repeated many times.

59

Length The length of the field on the display page. You should enter a value
from 1 to the maximum number of characters permitted by the display
page format and the cursor position. Messages longer than this value
will be clipped according to the “Justify” setting.

Justify How the message is to be formatted. This setting controls how EDICT-
97 pads-out messages which are shorter than the “Length” setting,
and which characters EDICT-97 discards if a message is longer than
the animation field. It also controls where the cursor appears if the field
is selected for data entry.

Mode Whether or not data entry is to be enabled. If this property is set to
“read-only”, the animation item will simply display the message
selected by the “Value” property. Selecting “Data Entry” will allow the
operator to change the value of the field, using the Raise and Lower
buttons.

Example of Inserting Message Text Animation:

First Insert Integer Value onto your page and designate it data entry.

Then Insert Text /Message and designate the Message number value equal to the value of the
Integer field A[0].

60

Finally make the following entries into the Message Table.

Hit F9 to download and you will see the message on your display page change based upon the
value of A[0].

Decode Text Animation Item

This animation item is used to select a string from a table, based upon the true or false value of
an expression associated with each string. EDICT-97 scans the table, and selects the first string
for which the controlling expression is true. This allows complex decoding functions to be
performed, including such things as bit-level prioritization of messages, or multiple decodes of
numeric values.

The table below lists the properties of this animation item…

Property Description

Table The decode table of this field. You should expand the field by pressing the
F2 key, and then enter pairs of controlling expressions and strings. EDICT-
97 will display the first string for which the controller expression is true, or
left empty. The order of the entries in the table is obviously very important.

Length The length of the field on the display page. You should enter a value from 1
to the maximum number of characters permitted by the display page format
and the cursor position. Strings longer than this value will be clipped
according to the “Justify” setting.

Justify How the string is to be formatted. This setting controls how EDICT-97 pads-
out strings which are shorter than the “Length” setting, and which
characters EDICT-97 discards if a string is longer than the animation field.

General Text Animation Item

This animation item displays the value of a string expression. As well as displaying string data
from the PLC or other Comms devices, it can be used together with the “CallString” function to
implement custom animation types. For example, you might run a program which examines level
data, and then either returns the value formatted using the “Format” function, or an indication that
the level is too high or low.

61

The table below lists the properties of this animation item…

Property Description

Value A string expression giving the text to be displayed. If the field is set to
“read-only” operation, any expression can be used. If “Data Entry”
mode is selected, a writable value must be entered.

Length The length of the field on the display page. You should enter a value
from 1 to the maximum number of characters permitted by the display
page format and the cursor position. Strings longer than this value will
be clipped according to the “Justify” setting.

Justify How the string is to be formatted. This setting controls how EDICT-97
pads-out strings which are shorter than the “Length” setting, and which
characters EDICT-97 discards if a string is longer than the animation
field.

Horizontal Bar Animation Item

This animation item displays a numeric value as a horizontal bar graph. If it is used on a terminal
with a graphics display, single-pixel resolution will be used. If it is used on a printed report or on a
character-based terminal, character resolution will be used. This field can be used for display,
and also for data entry. Data entry is obviously not available when working with printed reports.
The table below lists the properties of this animation item…

Property Description

Value An integer expression used to define the value to be displayed. If the
field is set to “read-only” operation, any expression can be used. If
“Data Entry” mode is selected, a writable value must be entered.

Length The length of the field on the display page. You should enter a value
from 1 to the maximum number of characters permitted by the display
page format and the cursor position. This field will partly determine the
bar graph scaling.

From An integer expression representing the value to be represented by the
bar graph when no pixels are shaded. This value should always be
less than that entered for the “To” property or undefined results will be
produced.

To An integer expression representing the value to be represented by the
bar graph when all pixels are shaded. This value should always be
greater than that entered for the “From” property, or undefined results
will be produced.

Mode Whether or not data entry is to be enabled. If this property is set to
“read-only”, the animation item will simply display the message
selected by the “Value” property. Selecting “Data Entry” will allow the
operator to change the value of the field, using the Raise and Lower
buttons.

62

Bar Graph Animation Example: An application requires that an integer value of 0 to 50 be
displayed with a corresponding 5-segment bar graph display.

 Use A[0] as the source value ..
And insert the horizontal bar graph below. Hit F9 to download. Note when you enter values from 0
to 50 for A[0] that the bar graph changes at the midway point(i.e.first bar graph segment appears
at A[0]=5 and the second bar graph appears at A[0]= 15).

Indicator Animation Item

This animation item is used to represent a digital value. It occupies a single character on the
display or printed report, with the character being shaded-in if the controlling value is true, or left
empty if the value is false. Terminals with graphic displays may choose to render this animation
item using a filled or empty box, although this feature may only operate in some display modes.
This field can be used for display, and also for data entry. Data entry is obviously not available
when working with printed reports.

The table below lists the properties of this animation item…

Property Description

Value An integer expression used to define the value to be displayed. If the
field is set to “read-only” operation, any expression can be used. If
“Data Entry” mode is selected, a writable value must be entered. A
non-zero value will “light up” the indicator, while a zero value will leave
it in its default state.

63

Mode Whether or not data entry is to be enabled. If this property is set to
“read-only”, the animation item will simply display the message
selected by the “Value” property. Selecting “Data Entry” will allow the
operator to change the value of the field, using the Raise and Lower
buttons.

Time and Date Animation Item

This animation item is used to display the current time or date. It has a single “Template”
property, which is used to show how the time or date should be formatted. Each character in the
template either represents a character to be literally copied to the output stream, or a placeholder
for time or date information.

The table below lists the possible placeholder characters, and explains their effects…

Character Description

‘h’ Will be replaced with the next available digit of the current hour.

‘m’ Will be replaced with the next available digit of the current minute.

‘s’ Will be replaced with the next available digit of the current second.

‘Y’ Will be replaced with the next available digit of the current year.

‘M’ Will be replaced with the next available digit of the current month.

‘D’ Will be replaced with the next available digit of the current date.

Note that the time is always shown in 24-hour or military format.

 64

Section 2 Bitmaps

N/A to Text Based Units

(Graphic Units Only)

Bitmap Images

Bitmap Images EDICT-97’s bitmap images are used to store pre-drawn bitmaps to be displayed
by operator terminals with a graphics display. Bitmaps may be used in two ways: Bitmaps equal
in size to the display may be selected as backdrops for particular pages, or smaller bitmaps may
be used as animation items. When a bitmap is used as an animation item, it can be divided
into a number of sub-images, with the choice of which sub-image to display being made on the
basis of data from the PLC or other remote device.

The Load Bitmap Dialog Box

This dialog box is used to select a bitmap file to be loaded.

How To Description

Specify a File Select the name from the left-hand list, or type it into the edit box
above the list. Filenames must be limited to a maximum of eight
characters in length.

Change Directory Select the new directory from the right-hand list, or type the path into

the edit box and press Enter. Remember that Windows 95 style long

filenames are not supported.

Change Drive Select a new drive from the drop-down list below the right-hand
directory list. Alternatively, type the drive letter and a colon into the edit

box, and press the Enter key.

 65

Note: Imported Bitmaps must be monochrome or 16 color and less than 60k in size.
The Width of an imported Bitmap must be an even number of pixels.

The Bitmap shown in the Window above is an example of a Full Width Image.

Bitmap Editing
EDICT-97 does not contain any facilities to edit bitmaps. Rather, you should use your favorite
bitmap editor to prepare the image as a BMP file, and then use the “Load” command on the
“Bitmap” menu to load it into EDICT-97. Once you have done this, EDICT-97 will remember the
source pathname, so that you can update EDICT-97’s copy of the bitmap simply by using the
“Update” command instead.

View Menu Commands
The window provides the following commands on the “View” menu…

Command Description

Maintain Aspect If enabled, this option forces EDICT-97 to scale the bitmap such that
the x and y scales are equal. This maintains the aspect ratio of the
original bitmap; such that circles remain circular.

Show Grid If enabled, EDICT-97 will show a pixel grid on top of the bitmap,
providing that the scale is such that it can be displayed clearly. If the

 66

bitmap has multiple sub-images, the grid will indicate where the sub-
image boundaries occur.

View as Drawn If enabled, EDICT-97 will show bitmaps with sub-images such that you
can preview each sub-image in turn by using the “Next State” and
“Previous State” commands. If this option is disabled, EDICT-97 will
display the entire bitmap at once.

It is also possible to import Bitmaps with sub-images. This powerful feature allows for custom
animation. The following example shows an imported bitmap, which contains 4 sub-images. Each
sub-image is 32 pixels wide. The result will be an animated arrow rotating to four positions based
upon the status of the Control Value.

Bitmap Properties properties of the current bitmap…

Property Description

Image Width The number of pixels for each sub-image. If you leave this property as
“Whole Bitmap”, EDICT-97 will display the whole bitmap when it is
selected as the source for a bitmap graphical animation item. If you
define a pixel width, EDICT-97 will use a control value to choose one
of a number of sub-images, each of which assumed to be the
indicated number of pixels in width. A value of zero will show the first
sub-image, value of one will show the second sub-image, and so on.

First as Mask Whether to use the first sub-image as a mask. If this option is set to
“Yes” and the bitmap is split into a number of sub-images, EDICT-97
will use the first sub-image as a mask to define which pixels on the
display will be updated. Black pixels on the mask will be left as they
were before the bitmap was drawn, while white pixels will be set to the
value specified in the selected sub-image. This allows the use of non-
rectangular images.

 67

An image width of 32 pixels was chosen for this example because the sub-images were each 32
pixels wide.

Section 3 Character Fonts

N/A to Text Based Units

The Character Fonts Window
This window is used to define the downloadable Character Fonts to be used by your database in
addition to the six “resident” fonts stored within the firmware of the operator terminal. Each
downloaded font is a rendering of a given size of a TrueType or bitmap font installed on your
system, which EDICT-97 will convert to a bitmap format suitable for use, by the terminal. To save
memory, you can limit which characters on the font are downloaded, as many applications do not
need the wide range of characters offered by most fonts by editing the font properties.

IMPORTANT:
You are reminded that TrueType fonts are licensed software. It is your responsibility to ensure
that you have the permission of the copyright owner to convert it into a bitmap for downloading in
this way before selecting it for use.

 68

To select a Font Choose Font/Properties.

Character Font Properties

This dialog box is used to edit the properties of the current font…

Property Description

Font Name The name of the font to be rendered. See the notice below.

Pixel Size The height in pixels of the resulting font. Note that many fonts will not
take up the whole of their character cell size, as they include some
padding known as “leading”. You may need to take this into account
when specifying the pixel size.

Bold Face Whether or not the font should be rendered in bold face.

 69

There are also a number of properties used to define which characters will be included in the
downloaded form of the font. The categories are hopefully self-explanatory, but please note that
certain punctuation characters are always included if numeric or alphabetical characters are
selected. This avoids having to download the entire punctuation set simply to include such things
as decimal points and commas.

Once a Font has been selected you can then select which characters you will be using in your
database. Choose the Include Tab from the Font Properties Window.

Note: When selecting which items to include for a particular Font remember that each item
(e.g. Numeric, Upper Case etc) uses memory in your Graphic Panel.

 70

Section 4 Global Events

Event Map Properties

Each event map entry has the following properties…

Property Description

Event The event to be matched by this row. The field’s drop-down list can be
used to select an event, or you may enter the first few letters of the
event’s abbreviation directly from the keyboard. Turn to the Event
Index section in Section A of this manual to see a full list of events,
together with their associated abbreviations.

Enable An enabling expression for this row. If you enter an expression in this
field, the row will only be activated when the expression is true. This
can be used to implement a simple form of “if-else” construction within
the event map itself.

Action The action to be performed. This field defines what will happen when
the event is matched. You can either enter the code directly, or
expand the cell and use the Action Builder to create the action for you.
Turn to the Function Index in Section A of this manual to see a full list
of Functions

Routing Where to send the event next. This column controls what EDICT-97
will do with the event when it has been processed by this row. The
default routing is from a local event map to the global event map, and
thence to the default handler within EDICT-97. Using this property to
specify the routing required can modify this behavior. Options: None,
System, Global

 71

Examples:
1) When Soft-Key 1 on the HMI is pressed and the Numeric value of CommBlock A[4] is greater
than 10; Report 1 will be printed.(For more detail on PrintReport Function look, in Function Index
in section A of this manual.)

2) When Function Key 1 on the HMI is pressed, the HMI display will return to the previous page.

3) When there is a Comms update, the Data in Comms Block C[1] to C[5] is copied to Comms
Block B[1] to B[5] respectively. (For more detail on CopyData Function, look in Function Index in
Section A of this manual.)

Note on Routing. Global, routing refers to an Event having both a global and local function. If
routing is Global then the local function for this event (page specific) will be followed by the Global
function. System routing refers to a System key (Raise, Lower, Next, Prev, Mute, Delete, Exit,
Alarms, Mute) having both System and local or global functions. If routing is System, then the
local function for this event will be followed by the System function.

Section 5 SoftKey Menus

EDICT-97 has the ability to create Soft Key Menus. These menus are created in the SoftKey
Menu category. The number of Soft Key Menus that can be created is limited only by the amount
of memory available in the designer’s database.

SoftKey Menu Properties

Edit/properties To add, “Go to” or rename Soft key Menus

 72

Property Description

Label The text that will appear next to this Soft Key
On Pressed The Action that results when this Soft Key is pressed. Example:

gotoPage(Page2)
On Auto-Repeat The Action that results when Soft Key is pressed and maintained.

Example: count++ (the register “count” will continuously increment by
1 as long as this Soft Key press is maintained).

On Released The Action that results when this Soft Key is released after a press.
Example: count:=914 (When this Soft Key is pressed and released
the value “count” will be loaded with the value 914).

Access Level Used with the System Security feature to control user access.
Access level can be set from “Any” up through “Level 9”.

Enable An enabling expression for this Soft Key. If an expression is entered
for this property, it must evaluate to a non-zero value for this Soft Key
to cause the designated Action. Example: Door==1 (The variable Door
must be equal to 1 (closed) for this Soft Key to cause the designated
Action.

Latch Control An expression used to latch this Soft Key on. If an expression is
entered for this property, it must evaluate to a non-zero value for this
Soft Key to latch on. Example Motor1ON==1 (If the variable
Motor1ON is equal to 1 (ON) this Soft Key will latch to the on position.

Clear Menu Yes or No. If Yes, this Soft Key will cause this Soft Key Menu to
disappear when Pressed or Released.

Soft Key Menu Functions

ShowMenu(Menu1) When this function is run the SoftKey Menu 1 will slide out on a display
page. Example: When this page is selected Soft Key Menu 1 will slide out.

HideMenu() When this function is run the displayed SoftKey Menu will disappear from the
display page. Example: When function key 1 is pressed the displayed SoftKey Menu will
disappear.

 73

Section 6 Security System

The system security implementation provides a fully configurable, hierarchical user specific
access control solution. Access can be controlled at both the page level and at the animation
level i.e. the programmer can decide which pages can be accessed (and hence viewed) and
which animation items on the page the user can modify.

The hierarchical scheme has 10 access levels (0 – 9). Access is controlled by assigning an
access level to the page/animation; the user must have an equivalent or higher access level to
access the item.

User Configuration

The System Security element of EDICT-97 contains the list of users; the properties are organized
into user and user groups. Each user must have an entry in the User table, the properties in the
table are unique to the user, in addition each user is assigned to a User Group, the group
properties are common to all users of the group. Choose the Security System Category.

User Description

Name The user name. This property is used during login to validate the user. A
user name can be numeric or alphanumeric and up to eight characters in
length. Up to 100 user names can be configured.

Password The user password. This property is used during login to validate user. A
user password can be up to 8 numeric characters in length.

User Group Assigns the user to the specified user group.

Users
Configuration
Window

 74

Group Description

Name The name used to identify the group in the user Properties. Group
names can be up to 20 Numeric/alphanumeric characters in length.

Access Level Defines the access level of all users of the group.
Idle Time The user timeout in seconds. This value specifies the number of

seconds without a key press after which the user will be
automatically logged off. If disabled the current user will remain
logged on indefinitely.

Page Access Control
The Display Page Properties now contain a number of Security properties. These
Properties are used to control access to the page and the action taken in the event of access
being denied.

Access Level Defines the minimum access level required by the user to access to the
page. There are 10 access levels (0-9). A group that has an access level
of 5 can access pages that have Access Levels of 5 or below.

Fallback Page This page is displayed if access to the page is denied. If the user does not
have access to this fallback page then the fallback page of the fallback
page will be displayed. This process will continue until a fallback page is
found with which the user has access permission. If no default page is
found in 10 attempts or no default page is specified the user will remain on
the current page.

 75

Animation Access Control

Access to specific animations, menus etc. can be controlled where the item has an Access Level
Property. The property specifies the minimum access level required by the user to access this
item i.e. modify a value on a data entry item, press a button on a menu etc.

Functions

The following functions have been added as part of the system security implementation:

GetAccessLevel () Returns the access level of the current User (0-9).
LogOff () Logs the current user off and sets Access level to 0.

Examples:

Login Screen

The user can login using the system login screen, this screen has entry fields for both user name
and password. The current user is logged off automatically when this page is activated i.e. no
explicit logoff is required.

The system login screen is a page with Page Property Category set to System Login. It is
The responsibility of the database programmer to ensure a system login screen is available
and a method to access this page is provided

Logged on user must have an Access Level of
5 or higher to access this data entry field.

Integer Value inserted
on Display page.

Touch sensitive disk
inserted on display page will
Log off current
user when pressed.

 76

When users access the System Login Screen the Raise/Lower keys are used to scroll through
the Users for the database. Using the Next key allows the user to enter his password. Again the
Raise /Lower keys are used to enter the password (The User and Password fields on Touch units
are touch sensitive and respond like data entry fields when pressed).

System Security Properties

To access the System Security Properties choose the Item Properties from the System
Security Category Page in EDICT-97.

Property Description

Log To The event log. This property defines the log to which system
security events are logged and enables the logging.

Automatic Log Off Automatic log off on system restart. After a system restart the
current user will be logged off automatically. During data base
development it may be necessary to disable this action to prevent
user log off during database downloads.

Security System Events

The following table lists the events specific to system security implementation.

Event Description

Login Successful User attempted to login and was successful.

Login Failed User attempted to login and failed.

User Logged Off The current user has logged off.

User Timeout The current user idle time has been exceeded.

Page Access Failed The user did not have high enough access permissions to
access the page.

Choosing Page/Properties from the
Display page toolbar accesses this
window.

This Log is configured in
the
Events Log category
of EDICT-97.

 77

Section 7 Comms Ports

Depending on which model you have, there are 2 or 3 Communication Ports available on your
HMI. Comm Ports are easily configured using the pull down Windows.

Comms Port Properties

Each Comms port has the following properties…

Property Description

Name The name of the Comms port. This is defined by the terminal you have
selected, and cannot be modified. Typically, it includes an indication of
the physical standard used by the port.

Driver The driver to be attached to the port. Expand the cell to display the
driver selection dialog box. This will present you with a list of driver
categories, and a list of available drivers.

Connect Via Any link driver to be used. A link driver provides an extra level of
control between the Comms driver and target device, and is used to
manage modems and the like. Expand the cell to make a selection
from the list of available drivers.

Data Format The data format to be used. This setting specifies the byte format to be
used on this port. This includes such things as the Baud rate and the
number of data bits. Expand the cell to edit these settings. The default
values are those considered to be most appropriate to the driver in
question.

Please note that special considerations are required when binding a Comms driver to the
Programming Port of a terminal, or it is possible to get into a situation where you are unable to
program the device without first clearing its memory. When using this port, it is important that you
provide a way of stopping the system and switching the port back into its usual programming role.
This can be done by calling the “StopSystem” function from a suitable point in your database.

 78

Comms Driver Selection

This dialog box is used to select the Comms driver to be used with the current communications
port. Communications drivers are broken down into categories, with these categories being listed
on the left-hand side of the dialog box. When you select a given category, the list on the right-
hand side will show the available drivers.
Some Comms drivers have further configuration information, which can be edited by pressing the
“Edit” button within the “Configuration” section of the dialog box. You can also restore this
information to its default settings by pressing the “Reset” button in the same section. This latter
button will only be enabled if changes have been made.
If you change the Comms driver on a port, which has been used, in your database, you may
receive a message telling you that you need to recompile your database to handle the resulting
errors. You may also find that certain Comms blocks contain addresses prefixed with “WAS”,
indicating that they are no longer valid for the new driver.

Section 8 Comms Devices
After you have set up your Comms Ports, you need to set up your Comms Devices.

The example above shows how Dev01 was chosen for a GE Fanuc Series 90 PLC.

Comms Device Properties

Each Comms device has the following properties…

Property Description

Name The name of the device. This name is used within the database to
refer to the device. It is not “understood” by EDICT-97, and can be any
string of a sensible length.

Driver The driver used to reach this device. Each device represents a PLC or
other piece of hardware to be addressed by EDICT-97, and the
“Driver” entry states to which Comms port it is to be attached, and so
which Comms driver is to be used.

Drop Any drop number or network address. If the driver requires it, you may
have to enter some form of address to identify the target device on the
network. The driver will typically select a suitable default value if no
value is entered.

 79

Section 9 Comms Blocks

Comms Block Properties

Each Comms block has the following properties…

Property Description

Device The device associated with the block. Either select the required device
from the drop-down list, or leave the setting as its default value if the
block is to hold internal data.

Address The address associated with the block. For blocks linked to an
external device, which organizes its data in tables, enter the start
register for the block. For other devices, expand the cell and enter the
address associated with each element in the block. You can also
expand the cell to enter comments for each element.

Data Type The type of data held in the block. For internal blocks, you may select
any of the data types supported by EDICT-97. For blocks linked to a
Comms device, EDICT-97 will restrict your choice to types supported
by the Comms driver. Note that this data type will always contain at
least as many bits as the underlying data type in the remote device.

Size The number of elements in the Comms block. For internal blocks, this
specifies the amount of memory to reserve. For a block associated
with a Comms device, it specifies how much data is to be transferred.
Note that the “Size” setting is in units of the data type specified by the
previous property, and is not based upon the underlying register type.

Access The direction of Comms transfer. For internal blocks, this setting is
ignored. For external blocks, it specifies the direction in which
communications is to occur. No matter what the setting of this
property, you can always force updates in any direction by using the
ReadBlock or WriteBlock functions.

Update

How often to update the block. For internal blocks, this setting is
ignored. For external blocks, a setting of “Auto” specifies that any read
operations demands are performed as soon as possible, while write
operations are performed when data is changed. A setting of “Manual”
indicates that no updates will occur unless manually requested, while
a numeric setting indicates the minimum number of seconds to occur
between updates.

 80

Enable An expression to enable or disable the block. If this expression is zero,
the block will not be updated. This can be used when testing to disable
Comms blocks until you have all the associated equipment available,
or to optimize your communications by enabling or disabling blocks
according to the current context.

Comms Block Data

EDICT-97 allows you to configure twenty-six communication blocks, used to pass data to and
from external devices such as PLCs or to store data within the terminal. Each block has a starting
address and a size, and EDICT-97 will automatically transfer data to and from the block as
required. The blocks are labeled from “A” to “Z”, and the elements within each block are
numbered such that the first element of a block is element zero.
Comms block elements can be used within expression by following the single-letter name of the
required block with an indexing expression in brackets. As an example, “A[0]” refers to the first
element in block A, while “B[10]” refers to the eleventh element in Comms block B. These
elements may in turn refer to registers within a remote device, depending upon how the block has
been configured. If you hold your mouse pointer above an expression containing Comms block
elements, EDICT-97 will display a small pop-up window listing the PLC registers being
referenced.

Indirect Addressing
As an expression is used to select the required element of a Comms block, you can use another
data item to select an element depending on circumstances. This technique is known as “indirect
addressing” or “indirection”, and can be used in many powerful applications. As an example, you
may wish to use a single display page to show the status of several motors, with an internal
variable being used to indicate which motor to display, and indirection being used to select the
associated status data from a Comms block.

Section 10 Named Data

Naming Data Items

EDICT-97 allows you to apply names to either existing expression or to internal memory locations
within the interface terminal. These named data items are defined at either a global level, such
that they are usable throughout the whole database, or at an item level, such that they can only
be used within a given display page or program. Named items are divided into four categories…

 81

Category Description

Variable Refers to a single writable data value, or a single register of internal
memory within the terminal. Variables are considered writable, and
can have values assigned to them.

Constant Refers to an expression, which always has the same value, and
contains no variables or other changeable data items. This allows
EDICT-97 to optimize its evaluation.

Formula Refers to any expression, which may or may not contain variables.
Unlike variables, formulae do not have to be writable and so cannot be
assigned values.

Data File Refers to a number of data items within a Comms block, or an area of
internal memory within the terminal. Each data file can contain up to
8000 registers.

Identifiers other than data files are referred to simply by their names. Data file names are
normally followed by a pair of square brackets, containing an expression, which is used to
determine which file element to access, with the first element being element zero.
As an expression is used to select the required element, you can use a variable or any other data
item to select an element depending on circumstances. This technique is known as “indirect
addressing” or “indirection”, and is used in many complex applications. As an example, you may
wish to use a single display page to show the status of several motors, with an internal variable
being used to indicate which motor to display, and indirection being used to select the associated
status data from a Comms block.

Examples

TankLevel := 100 // Assignment to variable

Levels[5] := 50 // Assignment to data file element

Val[Loop] := 0 // Assignment using indirection

PI * A[0] * A[0] // Use of constant in expression

Using the Named Data Table for Recipes
The following Example shows how the Named Data Table could be used for Recipe
Management. (The CommsBlocks Table could also be used for Recipe Management.)

This simple example requires that the HMI store and download 200 Recipes. Each Recipe has
three variables: flour, water and sugar.

First the Named Data Table is used to declare Recipe as a Named Data variable.

 82

Next the three variables: flour, water, sugar are declared in the Data Files section of the Named
Data Table. Note: each of these variables is set for a size of 200 values.

The CommsBlocks are used to download the chosen Recipe values to the PLC registers. The
following window shows CommsBlock A configured for this task.

Finally the Recipe page is developed using the following windows.

The window above shows the Recipe Integer .

The following window shows the variable flour configuration. The variables water and sugar
were configured in a similar manner.

 83

The following window shows CommBlock A[0] configured to send the data to the relevant PLC
register address. The CopyData function will initiate the transfer from the Recipe data file to the
CommBlock A registers.

The following window shows the complete Recipe Page. Note that pressing Soft-key 1 will
Copy the Recipe to the PLC addresses.

 84

Importing/Exporting CSV files (Comma Separated Variables)

EDICT-97 supports the Importing/Exporting of CSV files into/out of EDICT-97’s Named Data
table. This feature provides a seamless link between EDICT-97 and the controller’s configuration
software .This feature helps to reduce overall system integration time.

Example: importing a CSV file into EDICT-97

Above shows a CSV file which is in the proper format to be imported into the Named Data table of
an EDICT-97 database. The names of the variables are in column A and the direct references are
in column B. In this example the direct references are data registers in a IDEC Mirco 3 PLC.
(Note: The importing/exporting of variables into EDICT-97 works with direct references only.

To import the CSV file into EDICT-97 do the following.

Choose the CSV file you want to import.

Select Device number (For multiple drops).

 85

The Direct PLC references are now imported into the Named Data table.

If you are using a multi-drop, you could use a
prefix to differentiate between devices. For
example, string prefix “D3” would alter the
named data string to D3 Product A.

Direct Reference Wizard

Choose Address of Target Device

Choose Device

Choose Port

Summary

Successful Import

 86

Section 11 Alarm Scanner

The Alarm System

EDICT-97 contains an alarm scanner, which continually monitors up to 500 alarm points defined
in the alarm table. Each alarm point typically has a triggering expression, the state of which
determines the conditions under which the alarm will be triggered. You can also indicate the
mechanism to be used to accept each alarm, and whether a given alarm point will activate the
terminal’s internal sounder or not.
To view the list of currently active alarms, you need to create a display page with its “Category”
property set to “Alarm Viewer”. When this page is displayed, EDICT-97 will provide default
handling for the events necessary to provide the active alarm list, to allow the operators to scroll
up and down the list, and to allow alarms to be accepted. You should typically define a global
event map entry to display this page when a suitable key is pressed, or when a new alarm point is
activated.
If you are using the alarm system, it is also normal practice to provide a global event map entry to
call the “MuteSiren” function in response to the operator pressing the Mute key on the terminal.
You may choose to mute the siren in response to another event, or to perform other actions at the
same time. EDICT-97’S event handling system makes such customization an easy process.
If you want to operate an external siren in tandem with the terminal’s internal sounder, the best
technique is to place two entries in the trigger table. The first should turn on a PLC output on the
rising edge on the “IsSirenOn” system variable, and the second should turn the same output off in
response to a falling edge on the same variable. A similar technique can be used with
“ActiveAlarms” to provide an output to drive a beacon, which remains active while any alarms are
present.

Functions
AcceptAlarm, AcceptAll, MuteSiren, TriggerAlarm

Variables
ActiveAlarms, IsSirenOn, UnacceptedAlarms

 87

Alarm Properties

Each alarm point has the following properties…

Property Description

Alarm Title A string used to describe the alarm, either on the in-built alarm viewer,
or when logging alarms to a printer. You can enter a string of any
length, but remember that it will need to fit on your terminal’s display if
it is to be read by the operator.

Expression An expression which determines when the alarm is triggered, when
taken together with the “Trigger” property. The expression may be left
empty, if the alarm is intended to be triggered by the TriggerAlarm
function.

Trigger A multi-choice value, determining whether the alarm is level or edge
triggered, and the sense in which the trigger will operate. Note that
edge triggered alarms, which operate in Auto Accept mode will never
persist for more than a single alarm scan.

Accept The way in which the alarm is to be accepted. A setting of “Manual”
will require the operator to accept the alarm before it can be cleared.
Auto Accept alarms will clear as soon as the trigger condition is
removed. This setting is rarely used with edge triggered alarms.

Priority The priority of the alarm. This setting controls the order in which
alarms are displayed by the terminal. A lower value represents a
higher priority. Early versions of the runtime software may not choose
to honor this value.

Print Whether or not events associated with the alarm are printed. If this
value is set to “Yes”, any changes in the alarm’s state will be logged to
the system’s default printer.

Siren Whether or not the alarm activates the system’s internal sound. A
value of “Yes” will trigger the sounder whenever the alarm is triggered
and remains in a non-accepted condition.

 88

Runtime Properties

 These Panel keys perform the following specific functions when the Alarm Viewer system page is
displayed on a panel (For CL,CX,VX, GL and TX series panels).

PREV key> will scroll the Alarm view back in time
NEXT key> will scroll the Alarm view forward in time
EXIT key> will exit the ALARM VIEWER system page and return to the previous page
Soft keys are configured for Accepting alarms

Note: For the GL300T:
 > touching the left most third of the display mimics the PREV key.
 >touching the right most third of the display mimics the NEXT key.
 >touching the central third of the display mimics the EXIT key.

 89

Section 12 Trigger Table

The Trigger Table

This window is used to edit the properties of the table scanned by EDICT-97. Trigger table entries
are labeled from 1 to 500, and each has a number of properties, represented by the columns of
the table.

Trigger Properties

Each trigger table entry has the following properties…

Property Description

Expression The expression to be scanned. EDICT-97 will examine the state of this
expression, and look for the transition indicated by the “Edge”
property. When the appropriate edge is detected, the action specified
for the trigger table entry will be executed.

Edge The edge to be detected. If “Rising” is selected, EDICT-97 will execute
the associated action when the controlling expression switches from
zero to non-zero. If “Falling” is selected, the action will occur on the
opposition transition.

Action The action to be performed. This field defines what will happen when
the expression changes in the required direction. You can either enter
the code directly, or expand the cell and use the Action Builder to
create the action for you.

 90

Section 13 Schedule Table

The Schedule Table

This window is used to edit the properties of the table scanned by EDICT-97’s real-time
scheduler. The schedule table entries are labeled from 1 to 500, and each has a number of
properties, represented by the columns of the table.

Schedule Entry Properties

Each schedule table entry has the following properties…

Property Description

Days The days on which this entry will be activated. You can enter the initial letters
of the required days separated with spaces, or one of a number of standard
pattern names such as “Weekdays” and “Weekend”. You can also prefix a
sequence with “Not” to invert its sense. If you need to use expressions to
provide more control of which days are included, expand the cell in the usual
way and enter the required expressions in the resulting dialog box.

Hour The hour at which the entry will be activated. You can enter either an
expression, or an appropriate constant value. You may also enter a value of
“??”, to indicate that the table entry should be activated irrespective of the
hour element of the current time.

Min The minute at which the entry will be activated. You can enter either an
expression, or an appropriate constant value. You may also enter a value of
“??”, to indicate that the table entry should be activated irrespective of the
minute element of the current time.

Sec The second at which the entry will be activated. You can enter either an
expression, or an appropriate constant value. You may also enter a value of
“??”, to indicate that the table entry should be activated irrespective of the
second element of the current time.

Action The action to be performed. This field defines what will happen when the
scheduling conditions are matched. You can either enter the code directly, or
expand the cell and use the Action Builder to create the action for you.

 91

Section 14 Selection Table

This window is used to edit the properties of the selection table, which allows a remote PLC or
similar device to force a particular page to be displayed. The table will not be displayed until you
have edited the table properties to indicate which data value should be used to select a given
page. To do this, select the “Properties” command from the “Item” menu, and edit the “Control
Value” property. The Selection Table contains 500 points, each of which has a number of
properties, represented by the columns of the table. Please follow the link below for information
about the properties of each selection table entry.

Selection Table Properties

You can control the behavior of the selection table by editing its properties. These are accessed
from the “Item” menu of the Selection Table window, or by right-clicking on the icon in the
Database Contents window. The scanner has the following properties…

Property Description

Control Value The value to be used to control page selection. This should be set to
an expression that EDICT-97 will compare with each row in the
selection table to see if a particular page should be shown. It will
normally evaluate to a register in a remote device or PLC.

Lock by Default Whether selections will be locked by default. This controls the
behavior of those pages whose “Lock” property is left at its default
setting.

To access the previous Window choose Item, then Properties from the Selection Table Window.
After you have entered the Control Value (for Example, you may choose A[0] which has been set
in CommsBlocks to communicate to a variable memory register in a PLC, the Selection Table
appears.

 92

The example above shows 2 ways of selecting pages in the Selection table.

As Row
In this example A[0] was set up to read a value in a variable register in a PLC. If the value of that
register is 1, then Page1 will be selected in your HMI(a value of 2 will result in Page2 being
selected, etc.)

Specific Value
Page 5 is selected when the value of the variable PLC register is equal to the value 3716.

 93

Section 15 Message Table

The Message Table

This window is used to edit the global message table. Messages are labeled from 1 to 500.

Message Properties
Each message has the following properties…

Property Description

Text The string to be shown when the message is selected for display. The
string can be of any length, although the number of characters
displayed will be limited by the size of the Message Text animation
field.

Section 16 Data Logger(Graphic Units)

Note: To view all of the Channel Properties in EDICT-97(you may need to shift the Data
Logger Window. Click the Start Box (Next to Samples) on the top right hand side of the
Data Logger Window to view the additional properties.

 94

Channel Properties

Each data logger channel has the following properties…

Property Description

Channel Name The name of the channel. This text will be displayed by EDICT-97
when the channel is viewed. It can also be accessed by remote
devices uploading the data recorder data.

Value The value to be recorded. This should evaluate to the expression that
you wish to store in the channel. The logger records 16-bit signed
values, so use the “Transform” properties to scale down any large
values.

Transform An optional transform to be performed on the data. Before the data
value is stored in the logger channel, it will be transformed using the
information in this property. This can be used, for example, to scale
values from PLC to engineering units. Note that the “Value” property is
always evaluated as a 16-bit number, and that transforms that
manipulate bits will thus behave as if they have been passed a 16-bit
argument, even if the underlying data is really a 32-bit value.

Frequency How often to record a sample. This property defines the number of
seconds between samples, with the minimum value being 1, and the
maximum value amounting to about one and a half-hours. Heavily
loaded systems may struggle to record a large number of data values
at too fast a sample rate.

Samples The size of the channel’s buffer. This property indicates the size of the
memory buffer allocated to this channel. When the buffer is full, the
data logger will either wrap-around or stop logging, as defined by the
Data Logger Properties. Each element in the buffer takes up two bytes
of memory in the terminal.

Start How the channel should be started. If this property is set to
“Automatic”, the channel will start automatically when the system is
powered-up. If this property is set to “Manual”, the TrendStart,
TrendStop and TrendDefer functions can be used to control the
channel manually.

Minimum The minimum value for this channel. This value is only used when
displaying the channel. It is used to set the limits on the graph used to
show the channel contents. Data values are only clipped to this limit
when displayed. The values in the buffer may thus be outside this limit.

Maximum The maximum value for this channel. This value is only used when
displaying the channel. It is used to set the limits on the graph used to
show the channel contents. Data values are only clipped to this limit
when displayed. The values in the buffer may thus be outside this limit.

Filler The filler value for this channel. The data logger stores its data as a list
of values at fixed sampling intervals, together with the time of the last
reading. If the terminal is switched off for any reason, the logger must
pad-out the data with a dummy value to indicate a period for which
data is not available. This property defines the value to be used for this
purpose, and should ideally be a value not normally found in the data
being recorded.

Template The format to be used when displaying the value. EDICT-97 uses this
string when displaying the data in this channel. You can use this string
to indicate the position of a fixed decimal point, or to specify units to be
attached to the value. Follow the link below on Numeric Templates for
more information.

 95

To control the behavior of the Data Logger when the specified samples Choose Item/Properties
from the top of the Data Logger Menu. The options are as follows:

Property Description

Action When Full What to do when a channel runs out of memory. If this property is set
to “Stop Logging”, the data logger will automatically stop logging to a
given channel when it fills up. If it is left at “Wrap Around”, the oldest
data values in the buffer will be discarded and overwritten with newer
values. Unless you have a good reason to change this property, it is
best left at “Wrap Around”.

Note: See Graphics Section E of this manual for additional information on creating Trend
viewer pages in your database.

Runtime Properties

 These Panel keys perform the following specific functions when the Trend Viewer system page is
displayed on a panel (For VX, GL and TX series panels).

PREV key> will scroll the Trend view back in time
NEXT key> will scroll the Trend view forward in time
EXIT key> will exit the TREND VIEWER system page and return to the previous page

Note: For the GL300T:
 > touching the left most third of the display mimics the PREV key.
 >touching the right most third of the display mimics the NEXT key.
 >touching the central third of the display mimics the EXIT key.

 96

Section 17 Event Logs

Event Properties

Each event has the following properties…

Property Description

Event Name The name of the event. This is the name that will be used when the
event is to be displayed on screen or printed out. You can embed an
optional numeric parameter in the event text by enclosing a valid
numeric template with curly brackets. The value of the event
parameter will be substituted whenever the event is displayed or
printed, allowing a single event entry to record a number of different
occurrences.

Expression The expression to trigger the logging of the event. If this is left as
“Manual”, the event can be logged by running the LogEvent function
from an event map entry or by some other means.

Edge The edge to be detected. If “Rising” is selected, EDICT-97 will log the
associated event when the controlling expression switches from zero
to non-zero. If “Falling” is selected, the event will be logged on the
opposition transition.

Parameter An option parameter. EDICT-97 stores an optional 32-bit parameter
with each event occurrence. This parameter can be embedded in the
event name using the technique described above. This property is
used to define an expression to be used as that parameter. The
expression will be evaluated each time the transition defined by the
“Edge” property occurs. If the event is triggered manually, the
parameter is taken from the second argument to LogEvent, and this
property is ignored.

 97

Event Log Properties

You can control the behavior of an event log by editing its properties. These are accessed from
the “Log” menu of the Event Log window, or by right clicking on the icon in the Database
Contents window. The scanner has the following properties…

Property Description

Log Caption The name of the event log. This string will optionally be displayed
above the event log entries when the log is displayed on screen. It can
also be accessed by remote devices that wish to interrogate the event
log.

Log Capacity The number of events to store. Each event log entry takes up ten
bytes of memory in the terminal. Note that the default log size is quite
small to avoid a newly created Log taking up too much memory in its
initial configuration. You will typically want to increase this value before
using the log.

Action When Full What to do when the log is out of memory. If this property is set to
“Stop Logging”, the event log will automatically stop recording events
when it fills up. If it is left at “Wrap Around”, the oldest events in the
buffer will be discarded and overwritten with newer events. Unless you
have a good reason to change this property, it is best left at “Wrap
Around”.

Printer Enabled Whether or not to print the event log in real time. If this property is set
to “Yes”, events will be printed to the indicated printer as they are
logged. Note that whatever the setting of this property, the contents of
a log can be printed-out at a later point using the LogDump function.

Printer Port The port to which events will be printed. If this option is left as
“Default”, events will be printed to the first port which has a printer
driver bound to it. Otherwise, events will be printed to the port whose
number is entered here.

Printer Format The format to be used when printing events. If you expand this field,
you will be presented with a dialog box allowing you to define the
exact format to be used.

 98

To create an Event Viewer Page, go to a page in the Display Pages section. Choose Page
Properties and the following window appears.

Select Event Viewer for the Display Properties Category. Highlight the Options property and
Press the F2 key on your PC.

To set up your Event Viewer page display format, expand the Display Format option. The
following window will appear.

 99

Event Formatting

You can control how events are displayed on-screen or on the printer by editing the event
formatting options from this dialog box. Each check-box in the dialog box controls a given option,
details of which are found below…

Option Description

Include Time Include the time at which the event occurred.
Include Seconds Include the seconds portion of the event time.
Include Date Include the date at which the event occurred.
Include Year Include the year portion of the event time.
Include Markers Include the start and end markers for an event log display.
Include Header Include the event log title when viewing an event log display.
Include Type Include a letter to indicate the type of event.
Include Index Include the alarm or event index number.
Use Two Lines Split each event over two lines for narrow printers or displays.

Runtime Properties

 These Panel keys perform the following specific functions when the Event Viewer system page is
displayed on a panel (For CL, CX, VX, GL and TX series panels).

PREV key> will scroll the Event Log back in time
NEXT key> will scroll the Event Log forward in time
EXIT key> will exit the EVENT LOG system page and return to the previous page

Note: For the GL300T:
 > touching the left most third of the display mimics the PREV key.
 >touching the right most third of the display mimics the NEXT key.
 >touching the central third of the display mimics the EXIT key.

Section 18 Printed Reports

The report editor is used to define full-page reports, which can then be sent to a printer attached
to one of the terminal’s Comms ports. Each report may contain a combination of static text and
animation items. There are various types of animation items, each capable of representing plant
or internal data in a specified way. Reports are printed by calling the “PrintReport” function. This
may happen in response to an entry in an event map, in response to a change in plant data, or at
a given time of day on certain days of the week.

The following is a simple example.

Section 19 User Programs See Section B of this manual.

 100

Multiple Language Feature

The Multiple Language Feature of EDICT-97 allows the programmer to create a database where
all of the text fields (See note 1) can be displayed in up to 8 different languages.

To use the Multiple Language feature, Choose File/Database Information from the EDICT-97
Database Contents Window.

To enter the translations for your database, Choose File/Translations/Edit Translations.

To enter the translations for your database, Choose File/Translations/Edit Translations.

The translations can be entered directly into the Translate Database Strings Window. Database
strings can also be exported to a Text File. Using the Export function, the Default language file
(in most cases, this would be English) is exported to a text file. The Default language is translated
in the text file and imported back into the database via the Import function.

 101

To display one of the database languages, the function SetLanguage () is used.
The following example shows a touch sensitive disk configured to select the Spanish language.

By using a Custom Language a database can be created where the end user has the ability to
import a Custom Language. Furthermore a database can be saved as a Locked Copy. When the
end user opens a locked copy database the only editable properties are the translation strings.

To save a database as a Locked Copy Choose File/Translations/Save as Locked Copy.

The following window appears when a Locked Copy database is opened.

 A1

Section A - Functions

Using Functions

EDICT-97 provides a number of functions, which you can call from within your programs, expressions and
actions. A function is invoked by following its name with an opening round bracket, listing any arguments with
comma as separators, and following the sequence with a closing round bracket. If the function takes no
arguments, it must still be followed by the opening and closing brackets. EDICT-97 supports a concept called
“function overloading”, where a given function may be able to take arguments of different types, and may even
support optional arguments.
Functions are divided into two classes; namely, active and passive functions. An active function either changes
data, or causes a change of state within EDICT-97. It can be used to form an action or to form an action
statement within a program. Active functions cannot be used in expressions, where changing data is not
permitted. Passive functions do not change anything within EDICT-97, but simply return a value based upon their
arguments. For example, Min is a function, which returns the lower of its two arguments. Passive functions are
allowed within expressions, but may not, on their own, form actions.

Examples

GotoPage(Page1) // Function invocation in an action

StopSystem(); // Function invocation as program statement

Min(A[1], A[2]) // Function invocation in an expression

Index of Functions

Advanced Math Functions Page A3
Abs(Value) Page A6
AcceptAlarm(Index) Page A6
AcceptAll() Page A7
Beep(Frequency, Period) Page A7
CallFloat(Program) Page A8
CallInt(Program) Page A8
CallLong(Program) Page A9
CallString(Program) Page A9
ClearRx(Port) Page A10
ClearTx(Port) Page A10
CopyData(Dest,Source,Count) Page A11
Date(Year, Month, Date) Page A11
Dispatch(Program) Page A12
Fill(Dest,Count) Page A12
FlipEntrySign() Page A13
Format(Template,Value) Page A13
GetMessage(Index) Page A14
GetNow() Page A14
GetTimer() Page A15
GotoField(Set) Page A15
GotoPage(Page) Page A16
GotoPrevious() Page A16
HexVal(Text) Page A17
HideMenu() Page A17
HoldTx(Port,State) Page A17
IsMenuActive() Page A18
IsOnLine(Port) Page A18
Left(Text,Count) Page A19
Len(Text) Page A19
LogClear(Log) Page A20
LogDump(Log, Port, Count) Page A20
LogEvent(Log, Code, Param) Page A20
LogOff() Page A20
MakeChar(Value) Page A21
Max(Value1,Value2) Page A21

 A2

Mean(Data,Count) Page A22
Mid(Text,Offset,Count) Page A22
Min(Value1,Value2) Page A23
ModemAnswer(Port) Page A23
ModemDial(Port, Number) Page A23
ModemHangUp(Port) Page A23
ModemRinging(Port) Page A23
MuteSiren() Page A24
PopDev(Data,Count) Page A24
PostEvent(Param) Page A25
PrintFormFeed(Port) Page A25
PrintMessage(Port,Message) Page A26
PrintNewLine(Port) Page A26
PrintReport(Port,Report) Page A27
PrintString(Port,String) Page A27
PrintTimeStamp(Port) Page A28
Random(Range) Page A28
ReadBlock(Block) Page A28
RelayClose() Page A29
RelayOpen() Page A29
Right(Text,Count) Page A29
Run(Program) Page A30
SerialPrint(Port,Text) Page A30
SerialRead(Port) Page A31
SerialWrite(Port) Page A31
SetBreak(Port,State) Page A32
SetCommsTask(Port,Program) Page A33
SetLanguage(Language) Page A33
SetRTS(Port,State) Page A34
SetTimer(Value) Page A34
Sgn(Value) Page A35
ShowMenu(Menu) Page A35
SirenOn() Page A36
Sleep(Period) Page A36
Sqrt(Value) Page A37
StdDev(Data,Count) Page A37
StopSystem() Page A38
Time(Hour, Minute,Second) Page A38
ToggleMenu(Menu) Page A39
TrendClear(Channel) Page A39
TrendDefer(Channel, Time) Page A39
TrendStart(Channel) Page A39
TrendStop(Channel) Page A39
TriggerAlarm(Index) Page A40
UseAutoEnables(Port) Page A40
UseHalfDuplex(Port) Page A41
Val(Text) Page A41
WriteBlock(Block) Page A42

Note: Experienced 'C' programmers may find it useful to peruse the file C:\Edict97\sysfunc.inf for information on
various things that can be done in programming. This file comprises declarations for all the functions available in
Edict97.

 A3

Advanced Math Functions

Sin(Value)

Argument Type Description

Value Floating point Returns the trigonometric sine of the angle
Value. The Value of the angle must be in
radians.

Cos(Value)

Argument Type Description

Value Floating point Returns the trigonometric cosine of the angle
Value. The Value of the angle must be in
radians.

Tan(Value)

Argument Type Description

Value Floating point Returns the trigonometric tangent of the angle
Value. The Value of the angle must be in
radians.

Arcsin(Value)

Argument Type Description

Value Floating point Returns the angle in radians for the floating
point Value equivalent to the sine of that
angle.

ArcCos(Value)

Argument Type Description

Value Floating point Returns the angle in radians for the floating
point Value equivalent to the cosine of that
angle.

Arctan(Value)

Argument Type Description

Value Floating point Returns the angle in radians for the floating
point Value equivalent to the tangent of that
angle.

 A4

Return type
These functions return floating point values.

Examples

For the angle theta using Real Numbers inserted on a display page .

 If theta is equal to 0.79 radians

Sin(theta) Cos(theta) Tan(theta)
Returns 0.71 Returns 0.71 Returns 1.00

ArcSin(0.71) ArcCos(0.71) ArcTan(1.00)
Returns .79 radians Returns .79 radians Returns .79 radians

Log10(Value)

Argument Type Description

Value Floating point Returns the log of the floating point number
Value.

Examples

For the floating point number Values 5.0, 8.0

Log10(5.0) returns the floating point number 0.699

Log10(8.0) returns the floating pointnumber 0.903

Exp10(Value)

Argument Type Description

Value Floating point Returns 10 raised to the floating point number
Value.

Examples

For the floating point number Values 0.699, 0.903

Exp10(0.699) returns the floating point number 5.0

Exp10(0.903) returns the floating point number 8.0

 A5

Log(Value)

Argument Type Description

Value Floating point Returns the natural log of the floating point
number Value.

Examples

For the floating point number Values 5.0, 8.0

Log(5.0) returns the floating point number 1.6094

Log(8.0) returns the floating point number 2.0794

Exp(Value)

Argument Type Description

Value Floating point Returns e (2.7183) raised to the floating point
number Value.

Examples

For the floating point number Values 1.6094, 2.0794

Exp(1.6094) returns the floating point number 5.0

Exp(2.0794) returns the floating point number 8.0

Power(Value, Power)

Argument Type Description

Value, Power Both Floating point Returns the floating point Value raised to
specified Power.

Examples

For the floating point numbers Value=10.0 Power=3.0

Power(10.0, 3.0) returns the floating point number 1000.0

MakeFloat(ulong value)

Argument Type Description

Value 32 bit unsigned Converts the Value to a real number based on
the IEEE-754 standard.

This function is useful for taking a 32 bit value representative of an IEEE-754 floating point number, and
converting it into a real number in the terminal.

 A6

Examples

MakeFloat(0xC1480000) returns the value –12.5.

FromFloat(float)

Argument Type Description

Value Float Converts the Value to a 32 bit number
conforming to the IEEE-754 standard.

Overview
This function is useful for taking a real number in the terminal, and converting it to the 32 bit IEEE-754
representation that some devices require for floating point operations.

Examples

FromFloat(-12.5) will return the value 0xC1480000.

Abs(Value)

Argument Type Description

Value Numeric The value to be processed.

Overview
This function returns the absolute value as its argument.

Description
If the argument to this function is negative, the function returns the positive equivalent value. If the value is
positive or zero, the function simply returns that value. Calling the function with an unsigned argument will return
produce the value that was passed.

Return Type
This function returns a value of the same type as its argument.

Examples

Event Enable Action

Comms Update Default A[0] := Abs(A[1])

After every comms scan, this will set A[0] equal to the absolute value of A[1].

AcceptAlarm(Index)

Argument Type Description

Index 16-bit Unsigned The alarm number to be accepted.

Overview
This function accepts the alarm indicated by the Index argument.

Description
The Index parameter should be a number between 1 and 500, and should refer to an alarm within the database’s
Alarm Table. If the alarm has already been accepted, is an auto-accept alarm or is not active, this function will not
perform any action. If the alarm is accepted as a result of this function, an “Alarm Accepted” event will be posted.

 A7

Return Type
This function does not return a value.

Examples

Event Enable Action

Soft-Key 1 Pressed Default AcceptAlarm(1)

This will accept Alarm 1 without having to go to the Alarm Viewer page.

AcceptAll()

Argument Type Description

None

Overview
This function accepts all non-accepted active alarms.

Description
This function will accept any alarms, which are capable of being accepted. For each alarm that is accepted, an
“Alarm Accepted” event will be posted. If there are many alarms to be accepted, the system’s event queue may
overflow, and not all events will be processed.

Return Type
This function does not return a value.

Examples

Event Enable Action

Soft-Key 1 Pressed Default AcceptAll()

This will accept all alarms without having to go to the Alarm Viewer Page.

Beep(Frequency, Period)

Argument Type Description

Frequency 16-bit Unsigned The required frequency in semitones.
Period 16-bit Unsigned The required length in milliseconds.

Overview
This function causes the terminal’s beeper to make a sound.

Description
This function turns on the terminal’s beeper at the specified frequency for the specified number of milliseconds.
Passing a value of zero for the Period argument will turn off the beeper. Beep requests are not queued, so calling
the function will immediately override any previous calls. For those of you with a musical bent, the Frequency
argument is calibrated in semitones, with a value of 24 being tuned to middle A. You can combine this function
with the Sleep function to create programs which play tunes, should you find that you have nothing better to do
with your time. On a more serious “note”, the Beep function can be a useful debugging aid, as it provides an
asynchronous method of signaling the handling of an event, or the execution of a program step. This technique
was actually used when developing the low-level EDICT-97 system software.

Return Type
This function does not return a value.

 A8

Examples

Event Enable Action

Page Selected Speed >= 100 Beep(48, 100)

This will “beep” if the variable “Speed” is detected as greater than 99 when the page is first displayed.

CallFloat(Program)

Argument Type Description

Program Program Name The program to be executed.

Overview
This function calls the indicated program, expecting a floating point value to be returned.

Description
This function executes the indicated program, and returns a value equal to that passed to the return statement, or
zero if no argument is passed to that statement, or if execution simply “falls off” the end of the program. If the data
type of the returned value does not match that expected, EDICT-97 will attempt a conversion. If a conversion
cannot be performed, a zero value will be returned.
Note that this function can be called in all contexts, even those mandating that no values be changed or actions
performed. If the program you execute changes values that effect the context from which the function is called,
EDICT-97’s behavior in terms of processing these changes is undefined. Likewise, calling function which change
the current page will produce undefined behavior.

Return Type
This function returns a floating point value.

Examples

USER PROGRAM “FIND AREA”

...

Area := Length * Width;

return Area;

Event Enable Action

F1 Pressed Default A[0] := CallFloat(FindArea)

This will set A[0] to the floating point value calculated in the User Program.

CallInt(Program)

Argument Type Description

Program Program Name The program to be executed.

Overview
This function calls the indicated program, expecting a 16-bit value to be returned.

Description
This function executes the indicated program, and returns a value equal to that passed to the “return” statement,
or zero if no argument is passed to that statement, or if execution simply “falls off” the end of the program. If the
data type of the returned value does not match that expected, EDICT-97 will attempt a conversion. If a conversion
cannot be performed, a zero value will be returned.
Note that this function can be called in all contexts, even those that mandating that no values be changed or
actions performed. If the program you execute changes values that affect the context from which the function is
called, EDICT-97’s behavior in terms of processing these changes is undefined. Likewise, calling functions that
change the current page will produce undefined behavior.

 A9

Return Type
This function returns a 16-bit signed value.

Examples

USER PROGRAM “FindSpeed”

...

Speed := Distance / Time ;

return Speed;

Event Enable Action

F1 Pressed Default A[0] := CallInt(FindSpeed)

When F1 is pressed, A[0] will be loaded with the Integer value of Speed.

CallLong(Program)

Argument Type Description

Program Program Name The program to be executed.

Overview
This function calls the indicated program, expecting a 32-bit value to be returned.

Description
This function executes the indicated program, and returns a value equal to that passed to the “return” statement,
or zero if no argument is passed to that statement, or if execution simply “falls off” the end of the program. If the
data type of the returned value does not match that expected, EDICT-97 will attempt a conversion. If a conversion
cannot be performed, a zero value will be returned.
Note that this function can be called in all contexts, even those mandating that no values be changed or actions
performed. If the program you execute changes values that effect the context from which the function is called,
EDICT-97’s behavior in terms of processing these changes is undefined. Likewise, calling functions that change
the current page will produce undefined behavior.

Return Type
This function returns a 32-bit signed value.

Examples

USER PROGRAM “FindSize”

Size := Length * Width * Height;

return Size;

Event Enable Action

F1 Pressed Default A[0] := CallLong(FindSize)

This will set A[0] to a 32 bit number equal to the calculated value “Size”.

CallString(Program)

Argument Type Description

Program Program Name The program to be executed.

Overview
This function calls the indicated program, expecting a string to be returned.

 A10

Description
This function executes the indicated program, and returns a value equal to that passed to the “return” statement,
or an empty string if no argument is passed to that statement, or if execution simply “falls off” the end of the
program. If the data type of the returned value does not match that expected, EDICT-97 will attempt a conversion.
If a conversion cannot be performed, an empty string will be returned.
Note that this function can be called in all contexts, even those mandating that no values be changed or actions
performed. If the program you execute changes values that effect the context from which the function is called,
EDICT-97’s behavior in terms of processing these changes is undefined. Likewise, calling functions that change
the current page will produce undefined behavior.

Return Type
This function returns a string.

Examples

USER PROGRAM “FormatValue”

Value := “Hello World!”;

return Value;

Event Enable Action

F1 Pressed Default Text := CallString(FormatValue)

This will set the string variable “Text” to be Hello World!.

ClearRx(Port)

Argument Type Description

Port 16-bit Unsigned The required serial port.

Overview
This function clears the receive buffer of the indicated serial port.

Description
This function should only be called for a port to which the Roll-Your-Own Protocol driver has been bound. It will
discard any characters received on the port and currently held in memory. It is often called before starting a
Comms interaction to avoid any “leftovers” from a previous attempt; confusing the receive routine.

Return Type
This function does not return a value.

Examples

Event Enable Action

System Initialized Default ClearRx(1)

This will clear the receiver on port 1 (programming port) when the system is first started..

ClearTx(Port)

Argument Type Description

Port 16-bit Unsigned The required serial port.

Overview
This function clears the transmit buffer of the indicated serial port.

 A11

Description
This function should only be called for a port to which the Roll-Your-Own Protocol driver has been bound. It will
discard any characters awaiting transmission on the port, apart from those characters that have already been
passed-on to the port hardware. If “auto-enables” has been selected and RTS has been turned off, the control line
will be allowed to revert to its unasserted state once any remaining characters have been sent.

Return Type
This function does not return a value.

Examples

Event Enable Action

All Input Complete Default ClearTx(1)

This will clear the transmit buffer for port 1, after data entry is complete, in preparation for transmitting.

CopyData(Dest, Source, Count)

Argument Type Description

Destination Data Reference First item of destination data.
Source Data Reference First item of source data.
Count 16-bit Unsigned Number of data items to copy.

Overview
This function copies Count data items from Source to Destination.

Description
This function copies data as described above, where Source and Destination are both references to array
elements of the same basic type. This implies that both must refer to 16-bit integers, 32-bit integers, floating-point
values or strings. The signed or unsigned attributes of the data do not matter, nor does the length of the strings. If
you try to read beyond the end of an array, a zero or empty value will be copied.

Return Type
This function does not return a value.

Examples

Event Enable Action

Comms Update Default CopyData(A[0], B[0], 10)

This will copy 10 items from Comms Block B[0] through B[9] to Comms Block A[0] through A[9] at the end of a

communications scan.

Date(Year, Month, Date)

Argument Type Description

Year 16 bit unsigned Number of the year.
Month 16 bit unsigned Number of the month.
Date 16 bit unsigned Number of the date.

Overview
This function generates a 32 bit number that represents the number of seconds from Jan. 1 1997.

 A12

Description
Calling Date() after assigning values to Year, Month, and Date, will give a 32 bit unsigned number that represents
the number of seconds from Jan 1 1997 to the beginning of the date given. See also Time().

Return Type
This function returns a 32 bit unsigned number.

Examples

Event Enable Action

F1 Pressed Default TrendDefer(1, Date(2010, 1, 1))

The above line will start trending on channel 1 on Jan 1 2010.

Dispatch(Program)

Argument Type Description

Program Program Name The name of the program to dispatch.

Overview
This function runs the specified program in the background.

Description
This function adds the specified program to a queue of programs to be run by a low priority task within the EDICT-
97 runtime software. If the queue is full, the function will pause until a slot becomes available. Only one reference
to a program can be in the queue at any one time, so calling the function twice will have no further effect until the
program has been executed. The program is removed from the queue just before it is run, so a program can re-
dispatch itself to keep it running continuously at a very low priority. Note that there is little guarantee as to how
much processor time a program run with Dispatch will receive, and a complex program could take some time to
execute.

Return Type
This function does not return a value.

Examples

Event Enable Action

All Input Complete Default Dispatch(FindAverage)

This would run the program “FindAverage” after all data entry was complete. The Dispatch function can be

interrupted by other inputs.

Fill(Dest, Value, Count)

Argument Type Description

Destination Data Reference First item of destination data.
Value Data Value Data value to be used for fill.
Count 16-bit Unsigned Number of data items to copy.

Overview
This function sets Count data items from Destination onwards to Value.

 A13

Description
This function sets data items as described above, where Destination is a reference to array elements of the same
basic type as Value. This implies that both must refer to 16-bit integers, 32-bit integers, floating-point values or
strings. The signed or unsigned attributes of the data do not matter, nor does the length of the strings.

Return Type
This function does not return a value.

Examples

Event Enable Action

Page Removed Default Fill(A[0], 0, 100)

This will load a value of zero to all locations A[0] through A[99] when another page is selected.

FlipEntrySign()

Argument Type Description

None

Overview
This function flips the sign of the current data entry field.

Description
EDICT-97 allows signed data entry, but not all operator terminals supported by the software are fitted with a key
suitable for entering negative numbers. By assigning this function to a suitable key, you can overcome this
limitation. You may choose to use a function key and make an entry in the Global Event Map, or you may prefer
to designate a soft-key for this function, and make an appropriate entry in the page’s event map. If data entry is
not taking place, this function returns without action.Note: The Data Entry Property of the Data Entry field you are
working with must allow negative and positive numbers to be entered.

Return Type
This function does not return a value.

Examples

Event Enable Action

Soft-Key 1 Pressed Default FlipEntrySign()

This will change the sign of the currently highlighted Data-Entry field.

Format(Template, Value)

Argument Type Description

Template String The formatting template.
Value 32-bit Signed The value to be formatted.

Overview
This function formats the given number according to a formatting template.

Description
This function expands the given number into a string, using the formatting template to decide upon the number of
decimal places, the number base, and any units or other formatting which may be included. The function is often
used with the General Text animation item and the CallString function to implement custom animation items.

Return Type
This function returns a string.

 A14

Examples

Event Enable Action

F1 Pressed Default Text := Format(“0000.00”, A[0])

F1 Released Default PrintMessage(2, Text)

The above two statements will convert the numerical value in A[0] into a string that will be printed to port 2. E.g., if

A[0] equals 123456, the printout will show 1234.56.

GetMessage(Index)

Argument Type Description

Index Message Number The number of the global message to display.

Overview
This function selects the text of a given global message.

Description
This function permits the user to access the global message table strings.

Return Type
This function returns a string.

Examples

Event Enable Action

F1 Pressed Default OutputString:=Left(GetMessage(Msg),10)

This would copy the 10 leftmost characters of the message "msg" to OutputString.

GetNow()

Argument Type Description

None

Overview
This function gets the number of seconds from the beginning of the universe (according to Paradigm).

Description
GetNow() returns a 32 bit unsigned number. This number can be used in functions such as GetYear, GetMonth,
GetDate, GetDays,GetDay,GetWeek,GetWeekYear,GetHour,GetMin,GetSec, or in start/stop timer functions. For
example, a user variable ThisMonth := GetMonth(GetNow()) will put in ThisMonth the number of the month of
the year.

Return Type
This function returns a 32 bit unsigned integer.

Examples
TRIGGER TABLE

Expression Edge Action

A[0].2 == TRUE Rising StartTime := GetNow()

A[0].2 == FALSE Rising ElapsedTime := GetNow() - StartTime

The two statements, above, detect when the third bit of register A[0] changes from false to true to false. On the
first edge, the user variable StartTime is set to the current time. When the bit turns off, the user variable
ElapsedTime is loaded with the number of seconds that had passed since the bit went true.

 A15

GetTimer()

Argument Type Description

None

Overview
This function returns the value of the current task’s timer.

Description
Each task within the EDICT-97 runtime software has a timer associated with it. This timer can be loaded with a
millisecond value, and it will then count down until it reaches zero. The timer can be read using this function, or
set using the SetTimer function. These functions are generally employed within Roll-Your-Own-Protocol drivers to
implement time-outs in Comms interactions. In other applications, you should not rely on the timer value being
preserved once a given program has returned, as EDICT-97 may use the timer itself.

Return Type
This function returns a 16-bit unsigned value.

Examples

USER PROGRAM “CommsTask”

SetTimer(500);

while(GetTimer()) Run(GetCommsReply);

The “while” statement will continually run the User Program “GetCommsReply” until the 500 millisecond timeout

period expires.

GotoField(Set)

Argument Type Description

Set 16 bit Unsigned The number of the desired Data Entry field.

Overview
This function selects a particular data entry field on a page.

Description
This function permits positioning of the Data Entry Cursor on a particular field of the display. This can be useful if
the programmer needs to provide a "Help" function. By saving the value of the current field, the operator can
access a help screen, and return to the same data entry field. This number is 0 based, that is, the first data entry
field on the page is 0.

Return Type
This function returns 0 if Set is equal to or larger than the number of data entry fields.

Examples

Event Enable Action

New Field Selected Default Field := Param

F1 Pressed Field == 0 FieldSave := Field,GotoPage(Help0)

F1 Pressed Field == 1 FieldSave := Field,GotoPage(Help1)

Page Selected FieldSave <= 1 GotoField(FieldSave)

The above combination of Events, Enables, and Actions show one way of providing Help functions. The first line

saves the number of the field as the operator uses NEXT or PREV to change fields. The second and third lines

save that value, while changing to the Help pages. The fourth line verifies that the number in FieldSave is valid,

and then positions the cursor on that field.

 A16

GotoPage(Page)

Argument Type Description

Page Page Name The name of the page to display.

Overview
This function selects the specified page for display.

Description
This function instructs the system that the display page specified by Page should be displayed. Note that the page
is not displayed immediately, but at the point when the system has finished processing the current event. This
implies that several calls to this function made in response to the same event will cause the last referenced page
to be displayed. When the new page is selected, a “Page Removed” event will be sent to the previous page, and
a “Page Selected” event sent to the current page. If a further GotoPage function is called in response to the “Page
Selected” event, the system will switch to that page without displaying the originally specified page. It is possible
to lock the system by using this “ripple” technique to send it back-and-forth between two pages, so be careful to
avoid such loops. Calling GotoPage in response to the “Page Removed” event will produce undefined behavior
and should be avoided. A call to GotoPage will not have any effect at all if that page is already displayed.

Return Type
This function does not return a value.

Examples
Event Enable Action
Exit Key Pressed Default GotoPage(Page1)
When the Exit Key is pressed, this will display the page whose name is “Page1”.

GotoPrevious()

Argument Type Description

None

Overview
This function returns to the previously displayed page.

Description
This function “pops” a page name from an internal list of the last 20 pages displayed, and performs a GotoPage
function to select that page. If the page contains data entry fields, the last active field will be re-selected. If you
choose to use this function to back-up a menu structure, be sure to use it throughout. If you decide to use an
explicit GotoPage call to return from one level, and then try to use GotoPrevious from the next higher level, the
latter call will actually take you back down the tree, as the GotoPage call will have added the lower-level page to
the page list. The moral is that you should use explicit GotoPage calls or GotoPrevious calls, but not a mixture of
the two.

Return Type
This function does not return a value.

Examples

Event Enable Action

PREV key pressed Default GotoPrevious()

Returns to the previous page that was selected.

 A17

HexVal(Text)

Argument Type Description

Text String The string to be converted.

Overview
This function converts a hex string into a numeric long.

Description
This function converts its argument into a numeric value, taking the string to be a sequence of hex digits. It will
stop processing the string at the first digit, which cannot be considered valid. The case of any alpha characters is
ignored in any conversion.

Return Type
This function returns a 32-bit unsigned value.

Examples

Event Enable Action

F1 Pressed Default A[0] := HexVal(“ABCD”)

Pressing F1 will convert the ASCII characters ABCD into a 32 bit value, in this case the result = 43981. If the

string were “123Z” the result would be the equivalent of hex 123 or decimal 291. The 291 will be 32 bits.

HideMenu()

Argument Type Description

None

Overview
This function will cause a displayed Soft-Key Menu to be cleared.

Description
When a Soft-key menu is configured and then displayed, the function HideMenu() will clear the text and disable
the actions associated with the soft keys for that menu.

Return Type
This function does not return a value.

Examples

Event Enable Action

F1 Pressed Default HideMenu()

Provided a Soft Key Menu is programmed and displayed, the text for that menu is blanked. Any action assigned

to the Soft Keys for that menu are now disabled. See also: ShowMenu(), IsMenuActive(), ToggleMenu().

HoldTx(Port, State)

Argument Type Description

Port 16-bit Unsigned The required serial port.
State 16-bit Unsigned The transmission hold flag.

Overview
This function holds or releases transmission on the indicated serial port.

 A18

Description
This function should only be called for a port to which the Roll-Your-Own Protocol driver has been bound. If called
with a true value for the State argument, transmission on the indicated port will be disabled, and any subsequent
calls to functions which would normally send data will result in that data being buffered in memory. When the
function is then called with a false value for the State argument, transmission will be re-enabled and the data will
be released from the buffer. The function is often used to allow a Comms frame to be assembled in memory and
then transmitted in one single burst. If the function is not used, a task switch could cause gaps in the data stream.

Return Type
This function does not return a value.

Examples

Event Enable Action

F1 Pressed Default HoldTx(3, TRUE);

Disables the transmission of any data out of port 3 until the TRUE is changed to a value equal to FALSE, or 0.

IsMenuActive()

Argument Type Description

None

Overview
Indicates if a Soft Key Menu is displayed.

Description
This function returns a non-zero value if a Soft Key Menu is displayed, 0 otherwise.

Return Type
This function returns an Unsigned 16 bit value.

Examples

Event Enable Action

Soft Key 1 Pressed IsMenuActive() == 0 Run(Program1)

Runs Program1 if the Menu is not displayed. Otherwise, it will perform the action specified for the menu.

See also: ShowMenu(), HideMenu(), ToggleMenu().

IsOnLine(Port)

Argument Type Description

Port 16-bit Unsigned The required serial port.

Overview
This function indicates if the specified port is currently on-line.

Description
This function can be used when a link driver has been specified for a serial port. It returns a value of true or false,
indicating if the link is currently on-line. If no link driver has been specified, a value of true will always be returned.
This function can be used within the Trigger Table to take certain actions when a port goes on-line or off-line,
although a similar result can be obtained by responding to the events associated with that port.

Return Type
This function returns a 16-bit unsigned value.

 A19

Examples

Event Enable Action

Comms Update Default A[0] := IsOnLine(1)

A[0] will equal 0 if the port is specified and not communicating. A[0] will be some non-zero value otherwise.

Left(Text, Count)

Argument Type Description

Text String The string to be processed.
Count 16-bit Unsigned The number of characters to extract.

Overview
This function returns the left-most Count characters of Text.

Description
This function extracts a sub-string from Text, starting at the first position and extending for Count characters. If
Count exceeds the length of the string, the entire string is returned, without the addition of any padding.

Return Type
This function returns a string.

Examples

Event Enable Action

Soft-key 1 pressed default Data := Left(“Hello World”, 5)

Soft-key 2 pressed default Data := Left(“Hi Mom!”, 4)

The string variable “Data” will be equal to ‘Hello’, if Soft-Key 1 is pressed.

“Data” will be equal to ‘Hi M’ if Soft-Key 2 is pressed.

Len(Text)

Argument Type Description

Text String The string to be processed.

Overview
This function returns the number of characters in Text.

Description
This function returns the number of characters in its argument.

Return Type
This function returns a 16-bit unsigned value.

Examples

Event Enable Action

F1 Pressed Default Data := Len(“Fred”)

Data, a numeric variable, will be equal to 4.

 A20

LogClear(Log)

LogDump(Log, Port, Count)

LogEvent(Log, Code, Param)

Argument Type Description

Log Log Name The name of the log to be accessed.
Port 16 bit unsigned Number of the port.
Count 16 bit unsigned Number of items to print.
Code 16 bit unsigned Number of the event.
Param 32 bit unsigned Optional Parameter for the Event.

Overview
These function provide support for the Event Logger function in the Graphical units.

Description
Somewhat self-descriptive, these functions permit user control of the logging of events. LogClear() takes, as an
argument, the name of a log configured in Event Logs. LogDump() prints Count number of items, from the
specified log to the specified port. LogEvent() adds event number "Code" to the specified log. An optional
parameter can be logged by including a numerical template in curly brackets within the text to be logged. For
example, in Event Logs, log entry 7 in the log named Welding might say "Machine Stopped { 000 }". Executing th
function LogEvent(Welding, 7, 4) will cause 4 to replace the {000} in the display of the log.

Return Type
None of the functions return a value.

Examples

Event Enable Action

F1 Pressed Default LogDump(Welding, 2, 100)

This function prints the first 100 entries of the log named Welding, to port 2.

F2 Pressed Default LogClear(Welding)

This function clears the log named Welding..

LogOff()

Argument Type Description

None

Overview
This function logs off the current user and resets the security level.

Description
Executing this function when user 14 is logged on, removes user 14, and inactivates any function that requires
secure access.

Return Type
This function returns nothing.

Examples

Event Enable Action

EXIT Key Pressed Default LogOff()

This removes the current user from the system, and will disable access to any function requiring security
permission.

 A21

MakeChar(Value)

Argument Type Description

Value 16-bit Signed The value to be converted.

Overview
This function converts a numeric value to a single character string.

Description
The function returns a single character string containing a character with the same ASCII value as the function’s
argument. If a value of zero is passed, an empty string will be returned. This function is often used to assemble a
string from Comms data or other sources before extracting values using the Val or HexVal functions. It can also
be used to build a string when simulating alphanumeric input.

Return Type
This function returns a string.

Examples

USER PROGRAM

...

Text := “ABC”;

Data := 3;

Text += MakeChar(Data);

Data := 4;

Text += MakeChar(Data);

...

“Text” will now be ‘ABC34’.

Max(Value1, Value2)

Argument Type Description

Value1 Numeric The 1
st
 value to be processed.

Value2 Numeric The 2
nd
 value to be processed.

Overview
This function returns the larger of its two arguments.

Description
This function returns the larger of its two arguments, taking into consideration the data type of each. If an
unsigned value and a signed value are passed, EDICT-97’s behavior is undefined if the signed value should be
negative. You should thus be careful to pass values of similar type if you are dealing with signed numbers.

Return Type
This function returns a value of the type required to hold either argument.

Examples

Event Enable Action

Comms Update Default A[0] := Max(A[1], A[2])

A[0] is now the larger of A[1] and A[2].

 A22

Mean(Data, Count)

Argument Type Description

Data Data Reference First item of the data array.
Count 16-bit Unsigned The number of data points.

Overview
This function returns the mean value of an array of data points.

Description
This function returns the mean value of the data points indicated by its arguments. If the Count argument is zero,
a value of zero will always be returned. The internal computations are carried out using floating point maths,
irrespective of the data type of the underlying data. This ensures that no overflows can occur, even with a large
number of large data values. If you need to use the resulting value where only an integer is permitted, you should
use a type cast sequence to perform the type conversion, optionally multiplying by a power of ten first to maintain
a level of decimal precision.

Return Type
This function returns a floating point value.

Examples

Event Enable Action

F1 Pressed Default Average := Mean(A[0], 10)

“Average” is now the average of the 10 points A[0] through A[9].

Mid(Text, Offset, Count)

Argument Type Description

Text String The string to be processed.
Offset 16-bit Unsigned The zero-based starting position.
Count 16-bit Unsigned The number of characters to extract.

Overview
This function returns Count characters from position Offset in Text.

Description
This function extracts a sub-string from Text, starting at the position Offset and extending for Count characters. If
Count plus Offset exceeds the length of the string, the entire string is returned, without the addition of any
padding. You may pass a value of –1 for Count to indicate that you want the whole of the rest of the string to be
returned.

Return Type
This function returns a string.

Examples

Event Enable Action

F1 Pressed Default Data1 := Mid(“Hello EDICT-97 World”, 6, 5)

F1 Pressed Default Data2 := Mid(“Hello Fred”, 6, 5)

F1 Pressed Default Data3 := Mid(“Hello World & Fred”, 8,-1)

Data1 equals ‘EDICT-97’

Data2 equals ‘Fred’

Data3 equals ‘rld & Fred’

Another explanation for Offset is that it is equal to the number of characters ignored.

 A23

Min(Value1, Value2)

Argument Type Description

Value1 Numeric The 1
st
 value to be processed.

Value2 Numeric The 2
nd
 value to be processed.

Overview
This function returns the smaller of its two arguments.

Description
This function returns the smaller of its two arguments, taking into consideration the data type of each. If an
unsigned value and a signed value are passed, EDICT-97’s behavior is undefined if the signed value should be
negative. You should thus be careful to pass values of similar type if you are dealing with signed numbers.

Return Type
This function returns a value of the same required to hold either argument.

Examples

Event Enable Action

Comms Update Default A[0] := Min(A[1], A[2])

A[0] is the smaller of A[1] and A[2].

ModemAnswer(Port)

ModemDial(Port, Number)

ModemHangUp(Port)

ModemRinging(Port)

Argument Type Description

Port Numeric The number of the port for the modem.
Number Numeric The phone number.

Overview
These functions provide modem support.

Description
ModemDial(), ModemAnswer(), and ModemHangup() are Actions that can be performed in response to Events.
ModemRinging() is a function that returns TRUE if the modem is ringing. One would usually put this function in
the enable field with action ModemAnswer(). Once the connection is established, serial communications can
proceed normally through the selected port.

Return Type
ModemHangUp() returns nothing. ModemRinging returns TRUE if the Ring signal is being received. ModemDial,
and ModemAnswer return Hayes standard codes:
OK 0
RC_CONNECT 1
RC_RING 2
RC_NO_CARRIER 3
RC_ERROR 4
RC_NO_DIAL 6
RC_BUSY 7
RC_NO_REPLY 8
or any other code returned by the specific modem.

 A24

Examples

Event Enable Action

F1 Pressed Default ModemDial(2, "8885551234")

Comms Update ModemRinging(2) ModemAnswer(2)

F2 Pressed Default ModemHangUp(2)

MuteSiren()

Argument Type Description

None

Overview
This function turns off the system’s internal sounder.

Description
This function turns off the system’s internal sounder, which may have been previously activated by a call to
SirenOn, or by the activation of a suitable alarm. Note that this function also clears the IsSirenOn system variable,
which tracks the state of the siren.

Return Type
This function does not return a value.

Examples
Event Enable Action
MUTE Key Pressed Default MuteSiren()
This statement, normally put in GLOBAL EVENTS, will turn off the siren.

PopDev(Data, Count)

Argument Type Description

Data Data Reference First item of the data array.
Count 16-bit Unsigned The number of data points.

Overview
This function returns the standard deviation of an array of data points, assuming the data points to represent the
whole of the population under study. If you need to find the standard deviation of a sample, please use the
StdDev function instead.

Description
This function returns the standard deviation of the data points indicated by its arguments. If the Count argument is
zero, a value of zero will always be returned. The internal computations are carried out using floating point maths,
irrespective of the data type of the underlying data. This ensures that no overflows can occur, even with a large
number of large data values. If you need to use the resulting value where only an integer is permitted, you should
use a type cast sequence to perform the type conversion, optionally multiplying by a power of ten first to maintain
decimal precision.

Return Type
This function returns a floating point value.

Examples
Event Enable Action
Comms Update BatchDone Dev := PopDev(A[0], 10)
Calculates, when “BatchDone” is not zero, the standard deviation for all 10 items in the batch.

 A25

PostEvent(Param)

Argument Type Description

Parameter 32-bit Signed The event parameter.

Overview
This function posts a user event to the system event queue.

Description
This function stores an event of type “User Generated Event” in the system event queue, with the event
parameters being set to the specified value. When the event is being processed, this parameter will be placed in
the Param system variable, and can be used in any actions that handle the event. The function is used by
advanced EDICT-97 users who might want some activity to pass an event to the user interface system.
As an example, you might create Trigger Table entries to post user generated events when a number of bits
change in the PLC, with these bits being “connected” to push buttons on a remote control panel. By placing
suitable entries in an event map and using the Enable column to compare Param to the a unique value specified
for each bit, you can respond to these remote push buttons as you would keys on the terminal’s own keyboard.
Another use of this function is to provide a free-running chain of events for demonstration databases and the like.
The technique involves posting an event when the page in question is first selected, and using the event to post
another event and to perform some processing. The effect will be to execute this processing at the maximum rate
the system can maintain, irrespective of any Comms updates and the like. This technique places a high load on
the system and should not be used in real-life applications.

Return Type
This function does not return a value.

Examples

Trigger Table

Expression Edge Action

A[0] && 0x4 Rising PostUserEvent(0x04)

This will set Param to 4. Then Param could be used to perform an action, say:

Event Enable Action

Comms Update Param == 4 Gotopage(Page7)

Where Page7 instructs the operator to perform some action appropriate for that particular input bit that was set.

PrintFormFeed(Port)

Argument Type Description

Port 16-bit Unsigned The target port, or zero for default.

Overview
This function sends a form-feed to the indicated printer.

Description
This function sends a form-feed sequence to the printer indicated by Port, or to the first configured printer driver if
a value of zero is passed. If the Comms port in question does not have a printer driver configured in the Comms
Drivers table, no action will result from calling this function. Note that some printer drivers may choose to ignore
form feed requests if they do not make sense in the context of the driver in question. This function will return
immediately if memory is available to queue the printer request, but may take some time to return if the printer is
very busy.

Return Type
This function does not return a value.

 A26

Examples

Event Enable Action

F8 Pressed Default PrintFormFeed(1)

F8 Released Default PrintReport(1,Report1)

Pressing F8 with the above sequence will form-feed the printer in preparation for

“Report1” to be printed on Port 1.

PrintMessage(Port, Message)

Argument Type Description

Port 16-bit Unsigned The target port, or zero for default.
Message 16-bit Unsigned The message number to print.

Overview
This function printed the indicated message to the indicated printer.

Description
This function sends the text of the Message Table entry indicated by Message to the printer indicated by Port, or
to the first configured printer driver if a value of zero is passed. If the Comms port in question does not have a
printer driver configured in the Comms Drivers table, no action will result from calling this function. The message
text will not be followed by a carriage return sequence, so as to allow you to combine messages and other printer
primitives on the same line. This function will return immediately if memory is available to queue the printer
request, but may take some time to return if the printer is very busy.

Return Type
This function does not return a value.

Examples
Event Enable Action
Soft-Key 1 Pressed Default PrintMessage(2, 10)
This will print Message 10 from the Global Message Table to Port 2.

PrintNewLine(Port)

Argument Type Description

Port 16-bit Unsigned The target port, or zero for default.

Overview
This function sends a new-line sequence to the indicated printer.

Description
This function sends a new-line sequence to the printer indicated by Port, or to the first configured printer driver if a
value of zero is passed. If the Comms port in question does not have a printer driver configured in the Comms
Drivers table, no action will result from calling this function. This function will return immediately if memory is
available to queue the printer request, but may take some time to return if the printer is very busy.

Return Type
This function does not return a value.

Examples
Event Enable Action
Soft-Key 1 Pressed Default PrintLineFeed(2)
This will send a Line Feed to the printer connected to port 2.

 A27

PrintReport(Port, Report)

Argument Type Description

Port 16-bit Unsigned The target port, or zero for default.
Report Report Name The report to be printed.

Overview
This function prints the specified report to the indicated printer.

Description
This function sends the report indicated by Report to the printer indicated by Port, or to the first configured printer
driver if a value of zero is passed. If the Comms port in question does not have a printer driver configured in the
Comms Drivers table, no action will result from calling this function. This function will return immediately if
memory is available to queue the printer request, but may take some time to return if the printer is very busy. Any
animation items on the report will be expanded before the function returns, so subsequent changes to the
underlying data will not affect the print-out.

Return Type
This function does not return a value.

Examples

Schedule Table

Days Hour Min Sec Action
Weekdays 17 00 00 PrintReport(0, BatchReport)
This will print the report named “BatchReport” at 5:00 PM Mondays through Fridays on the first port found that

is selected as a printer driver.

PrintString(Port, String)

Argument Type Description

Port 16-bit Unsigned The target port, or zero for default.
String Character String The string to be printed.

Overview
This function prints the indicated string to the indicated printer.

Description
This function sends String to the printer indicated by Port, or to the first configured printer driver if a value of zero
is passed. If the Comms port in question does not have a printer driver configured in the Comms Drivers table, no
action will result from calling this function. This function will return immediately if memory is available to queue the
printer request, but may take some time to return if the printer is very busy. Control characters in the string may or
may not be honored, according to the printer driver in question, but all drivers will treat the “\n” character as a new
line sequence.

Return Type
This function does not return a value.

Examples

Event Enable Action

F1 Pressed Default PrintString(0, “Hello World!\n”)

F2 Pressed Default PrintString(0, MyName)

Pressing F1 will print Hello World! with a carriage return and a line feed. Pressing F2 will print the string stored in

the variable MyName, without adding any other characters. Both will go to the lowest numbered port that is

assigned a printer driver

 A28

PrintTimeStamp(Port)

Argument Type Description

Port 16-bit Unsigned The target port, or zero for default.

Overview
This function prints a time-and-date stamp to the indicated port.

Description
This function sends a time-and-date stamp sequence to the printer indicated by Port, or to the first configured
printer driver if a value of zero is passed. If the Comms port in question does not have a printer driver configured
in the Comms Drivers table, no action will result from calling this function. This function will return immediately if
memory is available to queue the printer request, but may take some time to return if the printer is very busy. The
time-and-date stamp will be formatted according to the language selected in the database’s terminal properties,
and will reflect the time at which the request was queued, rather than the time at which it was printed.

Return Type
This function does not return a value.

Examples
Event Enable Action
Comms Update A[0]>=50 PrintTimeStamp(1)

This will print the time and date when Comms Block location A[0] is greater than 49. This could be followed by a

PrintMessage command to show when an event occurred, and what happened.

Random(Range)

Argument Type Description

Range 16-bit Unsigned The range of numbers to return.

Overview
This function returns a random number from 0 to Range - 1.

Description
This function uses EDICT-97’s internal random number generator to produce a pseudo-random number in the
range required. The distribution of numbers produced should be more or less uniform, although true randomness
can never be achieved by purely software means. EDICT-97 continually evaluates random numbers in the
background whenever it has spare processing time, so the sequence of numbers generated by this function will
be different each time EDICT-97 starts execution.

Return Type
This function returns a 16-bit unsigned value.

Examples
Event Enable Action
F1 Pressed Default A[0] := Random(100)

Generates a pseudo-random number between 0 and 99.

ReadBlock(Block)

Argument Type Description

Block Block Name The Comms block to be read.

 A29

Overview
This function indicates that the indicated block should be read from the PLC.

Description
This function instructs the Comms task to read the indicated communications block from the associated device on
the next Comms scan. The function returns without waiting for the Comms update to be completed, so you should
not assume that the data will be in memory as soon as control returns. Neither should you assume that calling the
function for two blocks will read the data in the order the functions were called. The ReadBlock function can be
called for blocks of any access type, overriding whatever settings are made in the Comms Blocks table.

Return Type
This function does not return a value.

Examples
Event Enable Action
NEXT Key Pressed Default ReadBlock(Q)

This will read comms block Q, even if it is defined as a write block, on the comms scan following the pressing of

the NEXT key.

RelayClose()

RelayOpen()

Argument Type Description

None

Overview
These functions manipulate the relay on units so equipped.

Return Type
This function does not return a value.

Examples

Event Enable Action

Alarm Activated Default RelayClose()

Alarm Accepted Default RelayOpen()

On an Alarm condition, closes the relay until the alarm has been acknowledged.

Right(Text, Count)

Argument Type Description

Text String The string to be processed.
Count 16-bit Unsigned The number of characters to extract.

Overview
This function returns the right-most Count characters of Text.

Description
This function extracts a sub-string from Text, starting at the position Count from the end of the string. If Count plus
exceeds the length of the string, the entire string is returned, without the addition of any padding.

 A30

Return Type
This function returns a string.

Examples

Event Enable Action

F1 Pressed Default Data1 := Right(“Hello World”, 5)

F1 Pressed Default Data2 := Right(“Fred”, 8)

Data1 now equals ‘World’.

Data2 now equals ‘Fred’.

Run(Program)

Argument Type Description

Program Program Name The name of the program to run.

Overview
This function runs the program indicated.

Description
This function runs the program indicated, and only returns when the last statement of the program has been
executed, or when a “return” statement is encountered. Any value passed to the return statement is discarded. A
program can call another program up to a depth of about fifteen levels, and a program can even call itself. If you
nest program calls too deeply, you will get a stack error, which will trip the system watchdog. This should not
prove a problem, however, as nesting to a level sufficient to cause this kind of error is virtually unheard of.

Return Type
This function does not return a value.

Examples

Event Enable Action

All Input Complete Default Run(FindTotals)

This will execute the USER PROGRAM “FindTotals” after all data entry fields have

been completed. The terminal will not process any other inputs until the USER

PROGRAM is completed.

SerialPrint(Port, Text)

Argument Type Description

Port 16-bit Unsigned The required serial port.
Text String The data to be transmitted.

Overview
This function sends a character string to the given serial port.

Description
This function should only be called for a port to which the Roll-Your-Own Protocol driver has been bound. It is
used to transmit a sequence of characters to the port, and can be used to avoid repeated calls to the SerialWrite
function. If you call this function after disabling transmission on the port by using the HoldTx function, ensure that
you do not exceed the default buffer size of 256 character. If you attempt to store more characters than this while
transmission is disabled, the results are undefined.

 A31

Return Type
This function does not return a value.

Examples

Event Enable Action

F1 Pressed Default SerialPrint(1, “DRD” + Format(“000”, Reg))

When F1 is pressed, the terminal will take the value in the variable called Reg, convert the last 3 digits to 3 ASCII

digits, append them to the string DRD, and prints that to port 1. (If Reg equals 123, the printout is DRD123).

SerialRead(Port)

Argument Type Description

Port 16-bit Unsigned The required serial port.

Overview
This function reads a character from the indicated serial port.

Description
This function should only be called for a port to which the Roll-Your-Own Protocol driver has been bound. It
returns the next character stored in the port’s buffer, or a value of 0xFFFF is no character if available. While
waiting for characters in your receive routine, you should ideally call the Sleep function to yield the processor if no
data is available. Failure to do this will adversely effect other areas of the runtime software.

Return Type
This function returns a 16-bit unsigned value.

Examples

USER PROGRAMS

Data := SerialRead(1);

if (Data == 0xFFFF)

 return;

else

The above lines in a user program will check serial port 1 and if there are no characters waiting, will return.

Otherwise, it will continue the program.

SerialWrite(Port, Data)

Argument Type Description

Port 16-bit Unsigned The required serial port.
Data 16-bit Unsigned The byte to be transmitted.

Overview
This function transmits a given byte on the indicated serial port.

Description
This function should only be called for a port to which the Roll-Your-Own Protocol driver has been bound. It
transmits the given byte of data using the indicated port, or places it in the appropriate memory buffer if the port is

 A32

busy or if the HoldTx function has been used to delay transmission. The return value indicates whether or not the
function has been successful. A return value of false indicates that no room was available in the buffer to hold the
data, and that you should call the function again after calling the Sleep function to yield the processor for a short
period of time.
If you are using SerialWrite with an RS-485 port, you will need to turn on the RTS signal in order to enable the
port’s transmitter. This is done using the SetRTS function, but you need to take care to make sure that you do not
turn the signal off too early, and so “chop” the frame. The best way to do this is to use the UseAutoEnables
function to put the port into auto-enables mode, as the hardware will then look after the timing issues for you.
Refer to this function for more information on this subject.

Return Type
This function returns a 16-bit unsigned value.

Examples

USER PROGRAM

...

SerialWrite(1, 0x10);

SerialWrite(1, 0x32);

...

The above lines write out a line feed (0x10), and an ASCII 2 (0x32).

SetBreak(Port, State)

Argument Type Description

Port 16-bit Unsigned The required serial port.
State 16-bit Unsigned The required “break” state.

Overview
This function places the indicated port in the “break” state or cancels that state.

Description
This function should only be called for a port to which the Roll-Your-Own Protocol driver has been bound. When
called with a State argument of true, the indicated port will be put into the “break” state. This state will be
cancelled if the function is called with a State argument of false. Most protocols, which use the “break” state for
signaling, expect the state to exist for a certain amount of time, so it is usual to call the Sleep function between
related calls to SetBreak. Note that any timing will always be approximate.

Return Type
This function does not return a value.

Examples

USER PROGRAM

...

SetBreak(1, TRUE);

Sleep(100);

SetBreak(1, FALSE);

...

The above line will create a 100 millisecond ‘break’ condition on the transmit line to signal the receiving device.

 A33

SetCommsTask(Port, Program)

Argument Type Description

Port 16-bit Unsigned The required serial port.
Program Program Name The program to execute.

Overview
This function binds a given program to the Comms task for a given serial port.

Description
This function indicates that the system should execute the specified program after every update on the specified
serial port. The program will be called in the context of the Comms task responsible for the port in question, and
not be the user interface task. You should thus be careful when accessing related data items as you may find that
another task modifies these items unexpectedly. The function is typically to assign a program to carry out custom
Comms processing when using the Roll-Your-Own-Protocol driver.

Return Type
This function does not return a value.

Examples

GLOBAL EVENTS

Event Enable Action

System Initialized Default SetCommsTask(1, CommsTask)

This will set up, for communications, the program “CommsTask”. This will cause that program to run when a

communications scan occurs.

SetLanguage(Language)

Argument Type Description

Language 16-bit Unsigned The desired language number.

Overview
This function selects the desired language for text animation items.

Description
This function can be called to select a configured language to be used for text animation items, such as Status
Text, General Text, etc. Provided additional languages are configured in File/Database Information, this function
permits the operator to change the language to be used. Seven language titles are defined, UK English, US
English, French, German, Italian, Spanish, and Custom. The programmer assigns the language associated with
the Language argument in File/Database Information, and then selects File/Translations to assign the strings.

Return Type
This function does not return a value.

Examples

DISPLAY PAGE-Data Entry Field with value = Language

Event Enable Action

Soft Key 1 Pressed Language<=3 SetLanguage(Language++)

Soft Key 1 Pressed Language>3 Language := 0,SetLanguage(0)

The above will permit the selection of up to 4 languages assuming they are programmed 0

 A34

SetRTS(Port, State)

Argument Type Description

Port 16-bit Unsigned The required serial port.
State 16-bit Unsigned The required RTS state.

Overview
This function sets the state of the RTS control line on the indicated serial port.

Description
This function should only be called for a port to which the Roll-Your-Own Protocol driver has been bound. The
RTS line on the indicated port will be asserted if the State argument is true, and de-asserted if the argument is
false. If the port has been placed into “auto-enables” mode, RTS will not be allowed to return to a de-asserted
state until all the characters in the transmit queue have cleared the serial port hardware. As the RTS line is used
to key the transmitter on RS-485 ports, this technique is often used to ensure that the port is trio-stated at exactly
the point required to allow a frame to be sent.

Return Type
This function does not return a value.

Examples

USER PROGRAM
...

SetRTS(3, TRUE)

SerialWrite(3, 0x32)

SetRTS(3, FALSE)
...

This will enable the transmission of the hex value 32 from the RS485 Serial Port.

SetTimer(Value)

Argument Type Description

Value 16-bit Unsigned The timer value in milliseconds.

Overview
This function sets the current task’s timer to the indicated value.

Description
Each task within the EDICT-97 runtime software has a timer associated with it. This timer can be loaded with a
millisecond value, and it will then count down until it reaches zero. The timer can be set using this function, or
read using the GetTimer function. These functions are generally employed within Roll-Your-Own-Protocol drivers
to implement time-outs in Comms interactions. In other applications, you should not rely on the timer value being
preserved once a given program has returned, as EDICT-97 may use the timer itself.

Return Type
This function does not return a value.

Examples

USER PROGRAM
...

SetTimer(500)
...

This will set a 500 millisecond timer, allowing the subsequent code to take appropriate action at the end of the

time period.

 A35

Sgn(Value)

Argument Type Description

Value Numeric The value to be processed.

Overview
This function returns the sign of its argument.

Description
If the argument to this function is negative, a value of minus one will be returned; if the argument is positive, a
value of plus one will be returned; if the argument is zero, a result of zero will be returned. We can thus state that
X is equal to Sgn(X)*Abs(X) for all X.

Return Type
This function returns a value of the same type as its argument.

Examples

Event Enable Action

F1 Pressed Default A[0] := Sgn(A[1])

If A[1] is 0, A[0] is 0.

If A[1] is positive, A[0] is 1.

If A[1] is negative, A[0] is -1. The actual value stored in memory depends upon the type.

ShowMenu(Menu)

Argument Type Description

Menu Menu Name Menu Name assigned in Soft Key Menus.

Overview
This function displays the menu corresponding to the name given, which, in turn, assigns functions to the
associated soft keys.

Description
Once Soft Key Menus have been configured in the appropriate section of DataBase Contents, one selects which
menu is to be displayed according to the name given to that menu. ShowMenu(Menu1), will display Menu1 and
display the programmed text next to the Soft Keys, and create the linkage to the functions associated with those
soft keys, such as Key Pressed, Key Released, etc.

Return Type
This function does not return a value.

Examples

Event Enable Action

Page Selected Default ShowMenu(Recipe1)

Comms Update Error == TRUE ShowMenu(Diagnostics1)

When the page is selected, Recipe1 Menu will display at the Soft Keys. If the user variable Error gets set, the

Recipe1 menu will disappear, along with its assigned Soft Key functions, and the menu Diagnostics1 will appear,

which can assign different functions to the Soft Keys. See also HideMenu(), IsMenuActive(), ToggleMenu()

 A36

SirenOn()

Argument Type Description

None

Overview
This function turns on the system’s internal sounder.

Description
This function turns on the system’s internal sounder, in the same way as it is activated by the triggering of a
suitable alarm. Note that this function also sets the IsSirenOn system variable, which tracks the state of the siren.

Return Type
This function does not return a value.

Examples

Event Enable Action

Existing Link Broken Default SirenOn()

This will turn on the siren if the communications link is broken.

Sleep(Period)

Argument Type Description

Period 16-bit Unsigned The required period in milliseconds.

Overview
This function suspends the current task for the specified period.

Description
This function suspends the current task for the specified period. This advanced function should not be used
unless you have an understanding of how EDICT-97’s internal multitasking works, and of the implications of
suspending a given task. Things it should not be used for include attempting to create timed pulses in the PLC, or
pausing before switching away from a display page. The most common use of Sleep is to separate Beep
commands, either within successive lines of an event map, or within a program. You can also use it to slow-down
programs run in response to trigger table or schedule table entries, but we’re getting into the realms of magic here
so I shall say no more.

Return Type
This function does not return a value.

Examples

USER PROGRAM

....

Sleep(100)

....

This will pause the user program for 100 milliseconds.

 A37

Sqrt(Value)

Argument Type Description

Value Numeric The value to be processed.

Overview
This function returns the square root of its argument.

Description
This function returns the square root of its argument. Passing a negative value will produce an undefined result,
and may trip the terminal’s watchdog. Note that the returned value is always a floating point value. If you need to
use the resulting value where only an integer is permitted, you should use a type cast sequence to perform the
type conversion, optionally multiplying by a power of ten first to maintain a level of decimal precision.

Return Type
This function returns a floating point value.

Examples

Event Enable Action

F1 Pressed Default A[0] := Sqrt(2)

A[0] is the Square Root of 2 (1.4142..).

StdDev(Data, Count)

Argument Type Description

Data Data Reference First item of the data array.
Count 16-bit Unsigned The number of data points.

Overview
This function returns the standard deviation of an array of data points, assuming the data points to represent a
sample of the population under study. If you need to find the standard deviation of the whole population, please
use the PopDev function instead.

Description
This function returns the standard deviation of the data points indicated by its arguments. If the Count argument is
zero, a value of zero will always be returned. The internal computations are carried out using floating point maths,
irrespective of the data type of the underlying data. This ensures that no overflows can occur, even with a large
number of large data values. If you need to use the resulting value where only an integer is permitted, you should
use a type cast sequence to perform the type conversion, optionally multiplying by a power of ten first to maintain
a level of decimal precision.

Return Type
This function returns a floating point value.

Examples

Event Enable Action

Comms Update BatchDone Dev := StdDev(A[0], 10)

‘Dev’ will be equal to the standard deviation of A[0] through A[9], assuming that the entire batch is larger than 10.

 A38

StopSystem()

Argument Type Description

None

Overview
This function stops the runtime system.

Description
This function stops the runtime system, and allows the system to accept downloads from the configuration
software. If the system is power-cycled while in this state, it will restart as this function does not clear the
“database valid” flag. You will not normally have to call this function, as EDICT-97 will continue to monitor the
programming port during execution, unless a Comms device has been assigned to that port. In these cases, you
should ensure that you provide some way of running this function if you want to download to the terminal without
having to clear its database. Hiding the function at the bottom of a menu structure somewhere is a good idea, as
operators will otherwise take great pleasure in making mischief by stopping the system every time they get bored.
You may even like to implement a system whereby a given key combination must be pressed before the function
is called. This is best done by setting and clearing bits within an internal variable in response to key-pressed and
key-release events, and having an entry in the Trigger Table which calls this function when a given bit pattern is
present.

Return Type
This function does not return a value.

Examples

Event Enable Action

F8 Pressed StopSystemEnabled==TRUE StopSystem()

This will, if the variable “StopSystemEnabled” is TRUE, put the panel into “DOWNLOAD”. This is necessary when

Port 1 is assigned to any driver, otherwise, there is no way to reprogram, except by clearing the terminal memory

(pressing the MUTE and EXIT keys, simultaneously, while applying power).

Time(Hour, Minute, Second)

Argument Type Description

Hour 16 bit unsigned Number of the hour.
Minute 16 bit unsigned Number of the minute.
Second 16 bit unsigned Number of the second.

Overview
This function generates a 32 bit number that represents the number of seconds from the beginning of the day.

Description
Calling Time() after assigning values to Hour, Minute, and Second, will give a 32 bit unsigned number that
represents the number of seconds from the beginning of the day to the time given. See also Date().

Return Type
This function returns a 32 bit unsigned number.

Examples

Event Enable Action

F1 Pressed Default TrendDefer(1, Time(22, 59, 00))

The above line will put off trending on channel 1 until 10:59 PM.

 A39

ToggleMenu(Menu)

Argument Type Description

Menu Menu Name Menu Name assigned in Soft Key Menus.

Overview
This function causes the given menu to display and hide.

Description
ToggleMenu() will alternately hide and display a given menu. The difference between it, and
ShowMenu()/HideMenu(), is that the latter would require two separate events, whereas ToggleMenu will turn it on
when off, and off when on.

Return Type
This function does not return a value.

Examples

Event Enable Action

F1 Pressed Default ToggleMenu(Menu3)

This will display Menu3 on if it is not currently being displayed, and hide it if it is being displayed.

See also: ShowMenu(), HideMenu, IsMenuActive()

TrendClear(Channel)

TrendDefer(Channel, Time)

TrendStart(Channel)

TrendStop(Channel)

Argument Type Description

Channel Channel Number Number of the Channel configured in Data
Logger.

Time 32 bit unsigned Time (in seconds).

Overview
These functions control the operation of the Data Logger.

Description
TrendClear(), TrendStart(), and TrendStop() are self-explanatory. The programmer need only specify the number
of the channel (selected in Data Logger). TrendDefer() puts off the running of the trend until the specified time is
reached. This time is specified in number of seconds from Jan. 1 1997. Should you find it onerous to calculate
that number yourself, use the sum of the Date() and Time() functions described elsewhere in this document, to set
the value for you.

Return Type
None of these functions return a value.

Examples

Event Enable Action

F1 Pressed Default TrendDefer(1, Date(2010,1,1) + Time(11,59,14))

The above action will start the trending of Channel 1 at 11:59:14 on the first of Jan, 2010.

 A40

TriggerAlarm(Index)

Argument Type Description

Index 16-bit Unsigned The index of the alarm to trigger.

Overview
This function triggers the alarm indicated by the Index argument.

Description
The Index parameter should be a number between 1 and 500, and should refer to an alarm within the database’s
Alarm Table. The alarm will be triggered as if the usual trigger conditions have been met. The alarm will not
normally have a controlling expression defined, but this is not a requirement. If the alarm is activated as a result of
this function, an “Alarm Activated” event will be posted.

Return Type
This function does not return a value.

Examples

Event Enable Action

Comms Update Reg1>100 && Reg2<10 TriggerAlarm(10)

This will set Alarm 10 when the variable Reg1 and Reg2 are both in the indicated states after a communications

scan.

UseAutoEnables(Port)

Argument Type Description

Port 16-bit Unsigned The required serial port.

Overview
This function places the indicated port in “auto-enables” mode.

Description
This function should only be called for a port to which the Roll-Your-Own Protocol driver has been bound. It has
the effect of modifying the way in which the RTS and CTS control lines for the port operate, such that CTS acts as
a transmit enable signal, and RTS is gated such that it cannot return to a de-asserted state until any characters in
the transmit buffer have cleared the serial port hardware. For RS-485 ports, the CTS line is strapped active and
so does not come into the equation, while the RTS line is used to key the transmitter. If half-duplex mode has
been enabled, RTS is also used to enable or disable the receiver so as to prevent the terminal from “hearing” its
own transmission.

Return Type
This function does not return a value.

Examples

GLOBAL EVENTS

Event Enable Action

System Initialized Default UseAutoEnables(2)

This will allow the RTS and CTS on Port 2 to do hardware handshaking.

 A41

UseHalfDuplex(Port)

Argument Type Description

Port 16-bit Unsigned The required serial port.

Overview
This function places the indicated port in half-duplex mode.

Description
This function should only be called for a port to which the Roll-Your-Own Protocol driver has been bound. It is
used to place an RS-485 port into the mode required for two-wire communication, whereby the port’s receiver is
automatically disabled whenever its transmitter is active. It is nearly always used with “auto-enables” mode, to
ensure that the RTS control signal is properly timed with respect to the data stream.

Return Type
This function does not return a value.

Examples
GLOBAL EVENTS
Event Enable Action
System Initialized Default UseHalfDuplex(3)
Automatically controls the RTS to indicate to the receiving device that the transmission is complete.

Val(Text)

Argument Type Description

Text String The string to be converted.

Overview
This function converts a decimal string into a numeric long.

Description
This function converts its argument into a numeric value, taking the string to be a sequence of decimal digits. It
will stop processing the string at the first digit, which cannot be considered valid. Leading spaces are ignored, and
leading sign characters are processed providing there are no spaces between the sign and the first digit.

Return Type
This function returns a 32-bit signed value.

Examples

Event Enable Action

F1 Pressed Default A[0] := Val(“1234”)

F2 Pressed Default A[0] := Val(“12A4”)

In the first case A[0] will equal decimal 1234.

In the second case A[0] will equal decimal 12.

 A42

WriteBlock(Block)

Argument Type Description

Block Block Name The Comms block to be written.

Overview
This function indicates that the indicated block should be written to the PLC.

Description
This function instructs the Comms task to write the indicated communications block to the associated device on
the next Comms scan. The function returns without waiting for the Comms update to be completed, so you should
not assume that the data will be in the PLC as soon as control returns. Neither should you assume that calling the
function for two blocks will write the data in the order the functions were called. The WriteBlock function can be
called for blocks of any access type, overriding whatever settings are made in the Comms Blocks table.

Return Type
This function does not return a value.

Examples

Event Enable Action

Page Removed Default WriteBlock(Q)

This will write Comms Block Q when a new page has been selected, even if Block Q is selected as a READ

Block.

 A43

The Compound Statement

A compound statement is used to include several other statements where only a single statement is otherwise
permitted. As an example, the “if” statement controls the execution of a single statement, and yet you may wish to
make several actions dependent on the outcome of the conditional expression. By using a compound statement,
you can achieve this result by telling EDICT-97 to treat all the actions as one statement.
A compound statement takes the form of an opening curly bracket, followed by any number of other statements.
The statement is terminated by a closing curly bracket. As is usual, spaces and carriage returns are not taken into
account when parsing the code, but it is conventional to include each element of a compound statement on its
own line. The placement of the brackets varies according to programming style, but you will often see indentation
used to make it clear which line fall within the compound statement.

Example 1

if(A[0] > 10) {

 TriggerAlarm(1);

 GotoPage(Page1);

 Level := A[0];

 }

This example shows how curly brackets can be used to make the execution of three action statements conditional
upon the expression within the “if” statement. If the brackets had been omitted, the first action alone would have
been conditional, and the other two actions would have been executed in all circumstances.

The If-Else Statement

The if-else statement is used within a program to make the execution of an action conditional upon some
expression being true. You can optionally add an “else” clause to specify an action to be executed if the
expression is false. By using compound statement, you can control more that one action at a time.
The controlling expression of an “if” statement can vary in complexity. It can be something as simple as testing a
single bit within the PLC, or it can be something much more complex. For example, it is common to see a number
of conditions combined with the logical and OR operators.

Example 1

if(A[0] > 10)

 Beep(48, 100);

GotoPage(Page1);

This example shows how an “if” statement can be used to control a single action, in this case a function which
turns on the terminal’s beeper. Because the “if” controls only a single statement, the GotoPage function is always
executed, no matter what value is found in the register. Note how indentation and carriage returns have been
used to make this clear to the casual reader, but note also that EDICT-97 takes no notice of such formatting when
it compiles your code.

Example 2

if(A[0] > 10)

 Beep(48, 100);

else

 Beep(60, 100);

GotoPage(Page1);

This example shows a similar construction to the code above, but this time an “else” clause has been added to
cause a different pitch of beep to be sounded if the conditional expression turns out to be false. As the “else”
clause is controlling a single action, the GotoPage function will always be executed.

 A44

Example 3

if(A[0] > 10)

 Beep(48, 100);

else {

 Beep(60, 100);

 GotoPage(Page1);

 }

In this example, curly brackets have been used to group together the second Beep function and the call to
GotoPage. As a result of this, they are both considered part of the “else” clause, and so will only be executed if
the conditional expression is false. This technique uses what is known as a compound statement, whereby a
number of actions can be grouped together, and controlled as a single object.

Example 4

if(A[0] > 10) {

 if(B[0] > 10)

 Beep(48, 100);

 else

 GotoPage(Page2);

 }

else {

 Beep(60, 100);

 GotoPage(Page1);

 }

This time, we have used a compound statement for the main “if” section as well, and we have placed a further “if”
statement within that statement. This is a technique known as “nesting”, and it allows you to use conditions within
conditions. You should always use curly brackets when nesting statements like this, as it makes it clear to the
compiler what your intentions are. You may also choose to indent your code to make it easier to read.

The Loop Statements

Loop statements can be used to execute a given statement or statements repeatedly, until some condition ceases
to be true. EDICT-97 provides three different loop statements, one of which is really just an abbreviated form of
another. Follow the links below to read about each of the loop statements, their syntax and possible applications.
The While Loop
The Do-While Loop
The For Loop

Within the bodies of any of these loop statements, you can make use of the “break” and “continue” statements to
modify the loop’s behavior. Executing the “break” statement will cause EDICT-97 to exit from the loop at that
point, no matter what the value of the controlling expression. The “continue” statement will cause EDICT-97 to
abort this iteration of the loop, and return to the controlling expression immediately, skipping any later statements
in the loop body. When either statement is used, it is almost always qualified with an “if” statement.

 A45

The While Loop

The “while” loop is the simplest form of loop statement. It repeatedly tests the value of a controlling expression,
and then executes the following statement while ever the expression is true. If you want to extend the loop to
control more than one statement, enclose the statements in curly brackets to create a compound statement.

Example 1

A[0] := 0;

while(A[0] < 10) {

 PrintReport(0, Report1);

 A[0]++;

 }

In this example, the first line of code loads a value of zero into a register, which is then used to control the loop.
While ever this value is less than ten, EDICT-97 will print-out the report as requested, and then add one to the
register. The controlling condition will then be tested again, and the loop executed while it remains true. In this
example, the loop will execute ten times, and so ten copies of the report will be printed. Note that it is possible
that the loop body will never execute, as the condition is tested before the loop is run.

The Do-While Loop

The “do-while” loop is a modified version of the “while” loop whereby the condition is tested at the end of the loop.
This implies that the code within the loop will always execute at least once, no matter what the value of the
controlling expression. It is used a lot less commonly than the simple “while” loop, but is useful in some situations.

Example 1

do {

 PrintReport(0, Report1);

 Copies++;

 } while(Copies < 5);

In this example, the report is printed-out at least once, and then while the value in “Copies” is less than five. Curly
brackets have been used to allow two statements to be controlled by the loop, the second of which increments
“Copies” on each iteration. This logic implies that the code will print five reports the first time it is called, and then
one report each time thereafter.

The For Loop

If you look again at the example given above for the “while” loop, you will notice that there are three actions
performed upon A[0]. It is first loaded will an initial value, it is then used in the controlling expression, and it is
finally incremented each time EDICT-97 goes around the loop. As loops of a similar form are so common, EDICT-
97 provides a special construction, which allows more compact coding to be used.
Unlike the other loop statements, the “for” statement takes three expressions within round brackets, with a
semicolon being used to separate them from each other. The first expression is executed when the loop is
initialized, the second is used to control the execution of the loop body just as for a “while” loop, and the third is
executed after the loop body on each iteration.

Example 1

for(A[0] := 0; A[0] < 10; A[0]++)

 PrintReport(0, Report1);

This example performs exactly the same operation as the “while” loop example, but the compressed syntax of the
“for” loop lets you put all three expressions containing A[0] in the “for” statement itself. As we are only executing a
single statement within the loop, no curly brackets are needed in this example. If we had chose, to include the
brackets, however, the code would still have worked as intended.

 A46

The Switch Statement

The Switch Statement can be used in the place of a sequence of "if, else if, else if, else" code. Refer to Section B
for more information on this Statement.
For more information on "C", you need to obtain a book.

The Return Statement

The “return” statement is used to abort the current program, and optionally to return a value to the caller. The
value will only be accessible to the caller if they used one of the “Call” functions to invoke the program, and will be
discarded if the “Run” function is used. The data type of the return value will automatically be converted to the
type required by the caller, even if this means a loss of data or accuracy.

Example 1

if(A[0] < 10)

 return;

In this example, the program execution stops if the value in A[0] is less than 10. Any further statements in the
program will be skipped. It is always possible to achieve the same result by placing the other statements in an “if”
statement, but using “return” can sometimes make the program easier to read and is often quicker to execute.

Example 2

if(A[0] < 10000)

 return Format(“0000”, A[0]);

else

 return “High”;

This example checks if the value in A[0] is less than 10000, and either returns the value formatted as a four-
character string, or the word “High” as appropriate. This program could be called using the CallString function,
and the result use in a General Text animation field to provide a form of custom animation.

 B1

Section B - User Programs/Operators/System
 Variables

Part 1:Using Programs

Simple Programs
The simplest form of program comprises a number of actions, with each action being followed by
a semicolon, and typically a carriage return. When EDICT-97 executes the program, it performs
each of the actions in turn and then returns to the caller. As an example, the program below
changes the currently displayed page, and modifies the values held in a pair of Comms block
registers…

GotoPage(NewPage);

A[0] := 100;

A[1] := 120;

Complex Programs
Much more complex programs can be created using a variety of different “statement” types to
make decisions, or perform looping operations.

To run programs Choose User Programs from the EDICT-97 Menu and type in your program.
The following is the simple example listed above.

 You must translate your program before you download it to your HMI. From the User Programs

Window in EDICT-97, choose Program then choose Translate. After this hit F9 or the download
Icon from your toolbar.

 B2

Writing Programs
To provide the ultimate in flexibility, EDICT-97 provides a programming language, similar to the
“C” and “Java” languages used in so many applications. Each program is equivalent to a single
function within these languages, and may perform a list of actions, controlled by a number of
decision-making or loop constructions. Although this manual will not attempt to teach you the
subtleties of programming, you can find basic information about programming techniques by
reading about the following functions in Section A.

Functions
Run, CallFloat, CallInt, CallLong, CallString, Dispatch

Statement Types
A Program is made up of a number of statements, typically with one statement on each line. The
exact formatting in terms of line break and spacing does not actually matter to the compiler, but
splitting a program into lines makes it much easier to read. The different Statement types
available are: The Action Statement, The Compound Statement, The If-Else Statement, The Loop
Statement, The Switch Statement and The Return Statement.

The Action Statement
An action statement is a statement within a program that performs a single action, such as
assigning a value to a data item or calling one of EDICT-97’s functions. An action statement is the
basic type of statement, which makes up a program, as opposed to the various more complex
statements, which control execution flow. An action statement takes the form of the action to be
completed, followed by a semicolon to terminate the line. The action itself is formatted just as for
an action that you might enter into one of EDICT-97’s event maps.

Example 1

A[0] := 10;

B[0] := 12 * B[7] + B[3];

PrintReport(Report1);

GotoPage(Page1);

The Compound Statement
A compound statement is used to include several other statements where only a single statement
is otherwise permitted. As an example, the “if” statement controls the execution of a single
statement, and yet you may wish to make several actions dependent on the outcome of the
conditional expression. By using a compound statement, you can achieve this result by telling
EDICT-97 to treat all the actions as one statement.
A compound statement takes the form of an opening curly bracket, followed by any number of
other statements. A closing curly bracket terminates the statement. As is usual, spaces and
carriage returns are not taken into account when parsing the code, but it is conventional to include
each element of a compound statement on its own line. The placement of the brackets varies
according to programming style, but you will often see indentation used to make it clear, which
lines fall within the compound statement.

Example 1
if(A[0] > 10) {
 TriggerAlarm(1);
 GotoPage(Page1);
 Level := A[0];
 }

 B3

This example shows how curly brackets can be used to make the execution of three action
statements conditional upon the expression within the “if” statement. If the brackets had been
omitted, the first action alone would have been conditional, and the other two actions would have
been executed in all circumstances.

The If-Else Statement
The if-else statement is used within a program to make the execution of an action conditional
upon some expression being true. You can optionally add an “else” clause to specify an action to
be executed if the expression is false. By using compound statements, you can control more than
one action at a time.
The controlling expression of an “if” statement can vary in complexity. It can be something as
simple as testing a single bit within the PLC, or it can be something much more complex. For
example, it is common to see as a number of conditions combined with the logical AND and OR
operators.

Example 1

if(A[0] > 10)

 Beep(48, 100);

GotoPage(Page1);

This example shows how an “if” statement can be used to control a single action, in this case a
function which turns on the terminal’s beeper. Because the “if” controls only a single statement,
the GotoPage function is always executed, no matter what value is found in the register. Note how
indentation and carriage returns have been used to make this clear to the casual reader, but note
also that EDICT-97 takes no notice of such formatting when it compiles your code.

Example 2

if(A[0] > 10)

 Beep(48, 100);

else

 Beep(60, 100);

GotoPage(Page1);

This example shows a similar construction to the code above, but this time an “else” clause has
been added to cause a different pitch of beep to be sounded if the conditional expression turns
out to be false. As the “else” clause is controlling a single action, the GotoPage function will
always be executed.

Example 3

if(A[0] > 10)

 Beep(48, 100);

else {

 Beep(60, 100);

 GotoPage(Page1);

 }

In this example, curly brackets have been used to group together the second Beep function and
the call to GotoPage. As a result of this, they are both considered part of the “else” clause, and so
will only be executed if the conditional expression is false. This technique uses what is known as a
compound statement, whereby a number of actions can be grouped together, and controlled as a
single object.

 B4

Example 4

if(A[0] > 10) {

 if(B[0] > 10)

 Beep(48, 100);

 else

 GotoPage(Page2);

 }

else {

 Beep(60, 100);

 GotoPage(Page1);

 }

This time, we have used a compound statement for the main “if” section as well, and we have
placed a further “if” statement within that statement. This is a technique known as “nesting”, and it
allows you to use conditions within conditions. You should always use curly brackets when nesting
statements like this, as it makes it clear to the compiler what your intentions are. You may also
choose to indent your code to make it easier to read.

The Loop Statements
Loop statements can be used to execute a given statement or statements repeatedly, until some
condition ceases to be true. EDICT-97 provides three different loop statements, one of which is
really just an abbreviate form of another. Follow the links below to read about each of the loop
statements, their syntax and possible applications.
The While Loop
The Do-While Loop
The For Loop

Within the bodies of any of these loop statements, you can make use of the “break” and
“continue” statements to modify the loop’s behavior. Executing the “break” statement will cause
EDICT-97 to exit from the loop at that point, no matter what the value of the controlling
expression. The “continue” statement will cause EDICT-97 to abort this iteration of the loop, and
return to the controlling expression immediately, skipping any later statements in the loop body.
When either statement is used, it is almost always qualified with an “if” statement.

The While Loop
The “while” loop is the simplest form of loop statement. It repeatedly tests the value of a
controlling expression, and then executes the following statement while ever the expression is
true. If you want to extend the loop to control more than one statement, enclose the statements in
curly brackets to create a compound statement.

Example 1

A[0] := 0;

while(A[0] < 10) {

 PrintReport(0, Report1);

 A[0]++;

 }

In this example, the first line of code loads a value of zero into a register, which is then used to
control the loop. While ever this value is less than ten, EDICT-97 will print out the report as
requested, and then add one to the register. The controlling condition will then be tested again,
and the loop executed while it remains true. In this example, the loop will execute ten times, and
so ten copies of the report will be printed. Note that it is possible that the loop body will never
execute, as the condition is tested before the loop is run.

 B5

The Do-While Loop
The “do-while” loop is a modified version of the “while” loop whereby the condition is tested at the
end of the loop. This implies that the code within the loop will always execute at least once, no
matter what the value of the controlling expression. It is used a lot less commonly than the simple
“while” loop, but is useful in some situations.

Example 1

do {

 PrintReport(0, Report1);

 Copies++;

 } while(Copies < 5);

In this example, the report is printed out at least once and then while ever the value in “Copies” is
less than five. Curly brackets have been used to allow two statements to be controlled by the loop,
the second of which increments “Copies” on each iteration. This logic implies that the code will
print five reports the first time it is called and then one report each time thereafter.

The For Loop
If you look again at the example given above for the “while” loop, you will notice that there are
three actions performed upon A[0]. It is first loaded with an initial value, it is then used in the
controlling expression, and it is finally incremented each time EDICT-97 goes around the loop. As
loop of a similar form are so common, EDICT-97 provides a special construction, which allows
more compact coding to be used.
Unlike the other loop statements, the “for” statement takes three expressions within round
brackets, with a semicolon being used to separate them from each other. The first expression is
executed when the loop is initialized, the second is used to control the execution of the loop body
just as for a “while” loop, and the third is executed after the loop body on each iteration.

Example 1

for(A[0] := 0; A[0] < 10; A[0]++)

 PrintReport(0, Report1);

This example performs exactly the same operation as the “while” loop example, but the
compressed syntax of the “for” loop lets you put all three expressions containing A[0] in the “for”
statement itself. As we are only executing a single statement within the loop, no curly brackets are
needed in this example. If we had chose, to include the brackets, however, the code would still
have worked as intended.

The Switch Statement

The Switch Statement can be used in the place of a sequence of "if, else if, else if, else" code.
The Switch Statement may take this basic form:
Switch(value) {
 case 1:
 program text for value = 1;
 more program text for value = 1;
 break;
 case 7:
 program text for value = 7;
 break;

case 3:
case 4:
 program text for value = 3 or value = 4;

 B6

 break;
default:
 program text for what to do if value = none of the above;
 break;
}

Forgetting to put in the break statements will let succeeding code be executed.
For more information on “C”, you need to obtain a book.

The Return Statement
The “return” statement is used to abort the current program, and optionally to return a value to the
caller. The value will only be accessible to the caller if they used one of the “Call” functions to
invoke the program, and will be discarded if the “Run” function is used. The data type of the return
value will automatically be converted to the type required by the caller, even if this means a loss of
data or accuracy.

Example 1

if(A[0] < 10)

 return;

In this example, the program execution stops if the value in A[0] is less than 10. Any further
statements in the program will be skipped. It is always possible to achieve the same result by
placing the other statements in an “if” statement, but using “return” can sometimes make the
program easier to read and is often quicker to execute.

Example 2

if(A[0] < 10000)

 return Format(“0000”, A[0]);

else

 return “High”;

This example checks if the value in A[0] is less than 10000, and either returns the value formatted
as a four-character string, or the word “High” as appropriate. This program could be called using
the CallString function, and the result used in a General Text animation field to provide a form of
custom animation.

Using Actions
Actions are the means by which you instruct EDICT-97 to do something. An action can either be a
section of code, which modifies a data value, or a call to an active function. Active functions are
those functions which themselves change data values, or cause a change of state within EDICT-
97. Follow each of the links below for more details of each type of action…
1)Modifying Data
2)Modifying Bits
3)Using Functions

1) Modifying Data
The most common way of modifying a data value is to use code similar to…

A[0] := 100 * B[0]

The left-hand side of the “:=” assignment operator can be replaced with any expression which
refers to a writable value, and the right-hand side of the operator can be replaced with any
expression which produces a result of a suitable data type.

 B7

There are a number of more specialized assignment operators, which can take the value in a
location and combine it with another expression using one of a number of operators, before
storing the value back in the original location. These exist simply to save on typing, and the same
effect can always be achieved using a simple assignment.
Finally, EDICT-97 provides special operators to allow you to increase or decrease a data value by
a value of one. These operators, known as the increment and decrement operators respectively,
provide a useful shorthand method of achieving this common end. The examples below show how
to increment or decrement A[0]…

A[0]++

A[0]--

2)Modifying Bits
If you want to modify a single bit within a data value, you can use the bit selection operator “.” to
indicate which bit you wish to modify. As an example, the examples below turn the second bit of
register A[0] on and off respectively…

A[0].1 := 1

A[0].1 := 0

The expression to the left-hand side of the bit selection operator can be any modifiable integer
value, while the expression to the right-hand side can be either a constant value or another integer
expression. This last technique can be used to use one expression to select a bit within another, a
process known as “bit indirection”.

3) Using Functions (See Section A for list of Functions)
EDICT-97 provides a number of functions, which you can call from within your programs,
expressions and actions. A function is invoked by following its name with an opening round
bracket, listing any arguments with comma as separators, and following the sequence with a
closing round bracket. If the function takes no arguments, the opening and closing brackets must
still follow it. EDICT-97 supports a concept called “function overloading”, where a given function
may be able to take arguments of different types, and may even support optional arguments.
Functions are divided into two classes; namely, active and passive functions. An active function
either changes data, or causes a change of state within EDICT-97. It can be used to form an
action or to form an action statement within a program. Active functions cannot be used in
expressions, where changing data is not permitted. Passive functions do not change anything
within EDICT-97, but simply return a value based upon their arguments. For example, Min is a
function, which returns the lower of its two arguments. Passive functions are allowed within
expressions, but may not, on their own, form actions.

Examples

GotoPage(Page1) // Function invocation in an action

StopSystem(); // Function invocation as program statement

Min(A[1], A[2]) // Function invocation in an expression

Using Expressions
Expressions are used throughout EDICT-97 whenever a data value is required. An expression is a
combination of data items, known as operands, with special symbols known as operators. These
symbols are used to represent common operations such as addition and subtraction, as well as
more complex operations like bit shifting and so on. The simplest form of expression can be a
single data item, while more complex expression may contain many data items, combined with a
large number of operators.

 B8

Examples

Code Description

100 A constant integer value of 100.
A[0] The first element in Comms block A.
[D100] Register D100 in the first Comms device.
A[0] * 12 / 5 Register A[0] with a scale-factor.
C[5].6 Bit 6 of the indicated Comms block item.
B[A[0]]

The A[0]
th
 element in Comms block B.

The final example shows how to use an expression to select an item from within a
communications block, using a process known as “indirect addressing”. For more information on
this powerful technique, follow the link below to view a list of possible operands, and then look
under Comms Block Data.

Comments
EDICT-97 allows you to include comments in your code. You can include a so-called block
comment between the character sequences /* and */. Such a comment is able to include line
breaks and so can span multiple lines within a program. You can also introduce a single-line
comment using the // character sequence, and then terminate the comment with a line break. This
construction lets you add a comment to the end of a line of program code, or to the end of an
expression or action.

Examples

A[0] := 10; /* This is a comment */

A[1] := 20; // This is a comment too

Type Names
You have selected a keyword, which is a data type name. Since EDICT-97 does not allow local
variables to be declared within a program body, these keywords are used only in type conversion
sequences, known as type casts.

Data Types
The compiler used within EDICT-97 supports a number of data types, including a wide variety of
integer types, a floating point type and a dynamic string type. The floating-point type uses 32-bit
IEEE representation to hold values with an accuracy of around 7 significant figures. Stored string
variables can be up to 256 characters in length, although intermediate values may exceed this
length considerably. The table below lists the integer data types, together with the range of value
each can hold.

Type Range

16-bit Unsigned Value 0 to 65535
32-bit Unsigned Value 0 to 4294967295
16-bit Signed Value -32768 to +32767
32-bit Signed Value -2147483648 to +2147483647

In general, EDICT-97 will look after conversions between types as and when required by the
context, and will automatically “promote” a data value to the next larger type should the current
type prove too small to hold an intermediate value during a calculation. If you need to perform an
explicit type conversion, you can use what is known as a type cast sequence.

 B9

Type Casting
If you need explicitly to change the data type of an expression, you can use what is known as a
type cast sequence. This sequence can take two forms, one being the traditional “C” format and
the other being that supported by “C++” and Java. The first syntax is formed from a type name
contained within a pair of round brackets, and is shown in the first pair of examples. The second
form uses the type name in the same way you would invoke a function, and is shown in other
examples.
The type names, which can be used in type sequences, are…

Keyword Resulting Type

Uint 16-bit Unsigned Value
Ulong 32-bit Unsigned Value
int 16-bit Signed Value
long 32-bit Signed Value
float Floating Point Value

ExamplesB[0] := C[0] * (long) A[0]D[0] := E[0] + (uint) (A[0] / 2.5)B[0] := C[0] * long(A[0])D[0] :=
E[0] + uint(A[0] / 2.5)

The “break” Keyword
The “break” keyword has two distinct purposes. The first is to cause a premature exit from the
current loop construction, irrespective of the value of the expression controlling the loop. As an
example, you may use this keyword to stop a search early should you find some particular data
value in an array. The second purpose is to separate the “case” clauses of a “switch” statement,
and to prevent the flow of execution continuing from one clause to the next. For examples of both
uses, please review The Loop Statements and The Switch Statement on pages 4 to 6 of this
section.

The “case” Keyword
The “case” keyword is used to introduce a specific value-matching clause within a “switch”
statement. A constant expression and a colon must follow it. For an example of how it is used,
please review The Switch Statement on page 5 of this section.

The “continue” Keyword
The “continue” keyword is used within a loop construct to indicate that execution flow should
return to the top of the loop, and that any further statements within the loop body should be
skipped. For an example of how it is used, please review The Loop Statements on pages 4 and
5 of this section.

The “default” Keyword
The “default” keyword is used to introduce a default action clause within a “switch” statement.
Unlike “C” or Java, EDICT-97 insists that a “default” statement form the last clause of the
statement. For an example of how it is used, please review The Switch Statement on page 5 of
this section.

The “do” Keyword
The “do” keyword is used to introduce a loop construct, whereby a section of code can be
repeated a number of times, based upon the value of a controlling expression. The controlling
expression is evaluated at the end of the loop, so the code must execute at least once. For an
example of how it is used, please review The Loop Statements on pages 4 and 5 of this section.

 B10

The “else” Keyword
The “else” keyword is used to introduce an else-clause for an “if”statement. This allows a section
of code to be executed if the conditional expression within the” if” statement does not evaluate to
true. For an example of how it is used, please review The If-Else Statement on page 3 of this
section.

The “for” Keyword
The “for” keyword is used to form a loop construct, wherein it is possible to specify initialization,
controlling and iteration expressions of a single statement. The controlling expression is evaluated
before the loop body is executed, so the code within the body may not be executed at all. For an
example of how it is used, please review The Loop Statements on pages 4 and 5 of this section.

The “if” Keyword
The “if” keyword is used to introduce a statement whereby a section of code may or may not be
executed, based on whether a controlling expression is true or false. The “else” keyword may also
be used to introduce code to be executed should the main body not be executed. For an example
of how it is used, please review The If-Else Statement on page 3 of this section.

The “return” Keyword
The “return” statement is used to terminate a program early, and optionally to return a value to be
passed back to the caller. The value returned may be of any data type, but will be converted to the
type specifically requested by the caller. For an example of how it is used, please review The

Return Statement on page 6 of this section.

The “switch” Keyword
The “switch” keyword is used to introduce a statement whereby an expression can be compared
against a number of pre-defined constant values, and different sections of code executed as a
result. For an example of how it is used, please review The Switch Statement on page 5 of this
section.

The “while” Keyword
The “while” keyword has two purposes. First, it can be used to terminate a loop construct
introduced with a “do” keyword. Second, it can be used to introduce a loop construct of its own,
whereby a section of code can be repeated a number of times, based upon the value of a
controlling expression. The controlling expression is evaluated at the start of the loop, so the code
may not execute at all. For an example of how it is used, please review The Loop Statements on
page B4 of this section.

The “WAS” Keyword
The “WAS” keyword serves a special purpose; namely, to mark a section of code as containing
errors, and to prevent it from generating further error messages when it is compiled. It can thus be
considered as a form of comment marker. The keyword is added by EDICT-97 when it detects
that a change you have made somewhere in the database will cause existing code to become
invalid. Rather than simply deleting the code, EDICT-97 prefixes it with “WAS” to remove the error
while still allowing you to see the previous code. The “Recompile” command on the “Tools” menu
will remove “WAS” keywords from the code before recompiling if the previous errors have now
been corrected.

 B11

Part 2:Operators
Operators are used to combine data items, or to modify a single data item. The data items
manipulated by operators are called operands. An operator who combines two data items is called
a binary operator, while those that work on a single data item are called unary operators.
Examples of binary operators are the + operator used to add two data items, and the * operator
used to multiply two values. An example of the unary operator is ~, which is used to take the one’s
complement of an operand.
Operators are arranged in what are called priority groups. These groups are used to control the
order in which operators are applied. For example, it is normal to apply multiplication operators
before addition operators, and this is rule enforced by placing the latter in a lower priority group
than the former. The table below lists the groups, together with the operators they contain. You
can click on a given group to see more details about the operators and their functions.

Group Operators

Group 1 ++ -- . [
Group 2 (type) ++ -- ! ~ - +
Group 3 * / %
Group 4 + -
Group 5 << >>
Group 6 < > <= >=
Group 7 == !=
Group 8 &
Group 9 |
Group 10 ^
Group 11 &&
Group 12 ||
Group 13 := op=
Group 14 ,

Operator Group 1

Operator Type Name Used With

 ++ Postfix Increment. Numerics.
 -- Postfix Decrement. Numerics.
 . Binary Bit selection. Integers.
 [Special Indexing. See Text.

The increment and decrement operators used to add or subtract one to the contents of a
modified value. As they are postfix operators, they follow the operand, which they are to modify,
and their return value is that of the operand before it is modified. You should contrast this behavior
with the prefix versions contained in the next group.
The bit selection operator is used to examine the value of a bit within an integer value, or to
specify a bit within a modifiable value to which a new value is to be assigned. Both operands must
be integers. The return value of the operator is either 1 or 0, depending on the value of the bit
being examined.
The indexing operator is a special operator, applied using syntax of “L[R]”, where L and R are the
left-hand and right-hand operands respectively. The operator is used to select elements from an

array or a string, with the R
th
 element being chosen from the item specified by L. Note that a

value of zero in R selects the first element.

 B12

Examples

Code Description

A[0]++ The value in A[0] is increased by one.
A[0]-- The value in A[0] is decreased by one.
A[0].4 Returns the value of bit 4 of A[0].
A[5]

Returns the value of the 6
th
 element of A.

“Fred”[2] Returns the ASCII value of “e”.

Operator Group 2

Operator Type Name Used With

 (type) Prefix. Type Cast. Anything.
 ++ Prefix. Increment. Numerics.
 -- Prefix. Decrement. Numerics.
 ! Prefix. Logical NOT. Numerics.
 ~ Prefix. Bitwise NOT. Integers.
 - Prefix. Unary Minus. Numerics.
 + Prefix. Unary Plus. Numerics.

The type cast operator is used to change the data type of its operand. The keyword within the
brackets should be one of the type names supported by EDICT-97. For more information on how
to use type casts, please follow this link to see a specific section, where you will find details of the
types available and the permitted type conversions.
The increment and decrement operators used to add or subtract one to the contents of a
modified value. As they are prefix operators, they precede the operand, which they are to modify,
and their return value is that of the operand after it is modified. You should contrast this behavior
with the postfix versions contained in the previous group.
The logical NOT operator returns a value of one if its operand is zero, and a value of zero in all
other cases. It can be used as a shorthand method of comparing a value with zero, or a way of
inverting the logic of an expression. The bitwise NOT returns a value equal to the original
operand with the state of every data bit inverted.
The unary minus operator changes the sign of the operand. It cannot be applied to unsigned
constants, and applying it to an unsigned variable will first convert the operand to a signed value.
The unary plus operator is effectively a null operator, as it simply returns the value of its operand.

Examples

Code Description

A[0]++ The value in A[0] is increased by one.
A[0]-- The value in A[0] is decreased by one.
!A[0] Returns 1 if A[0] is zero, or 0 otherwise.
~0x7777 Returns the one’s complement of 0x7777.
-A[0] Returns the two’s complement of A[0].

Operator Group 3

Operator Type Name Used With

 * Binary. Multiplication. Numerics.
 / Binary. Division. Numerics.
 % Binary. Remainder. Integers.

 B13

The multiplication operator returns the product of its operands, promoting the result to a larger

data type should this be required. The division operator returns the quotient of its operands, or
the largest possible value for the data type in question if the second operand is zero. The
remainder operator returns the remainder of dividing its first operand by its second, or zero if the
second operand is zero.

Examples

Code Description

A[0] * 10 Returns A[0] multiplied by 10.
1234 / 10 Returns a value of 123.
1234 / 10.0 Returns a value of 123.4.
A[0] % 10 Returns the last decimal digit of A[0].

Operator Group 4

Operator Type Name Used With

 + Binary. Addition. Numerics, Strings.
 - Binary. Subtraction. Numerics.

The addition operator returns the sum of its operands, promoting the result to a larger data type

should this be required. The subtraction operator returns the difference of its operands, again
promoting the resulting data type if required.

Examples

Code Description

A[0] + A[1] Returns the sum of A[0] and A[1].
A[0] - 10 Returns 10 less than the value in A[0].

Operator Group 5

Operator Type Name Used With

 << Binary. Shift Left. Integers.
 >> Binary. Shift Right. Integers.

The shift left operator returns a value equal to its left-hand operand shifted left by the number of
bits specified by its right-hand operand. Empty bits are always filled with zeros. This is the
equivalent of multiplying the value by a given power of two.
The shift right operator returns a value equal to its left-hand operand shifted right by the number
of bits specified by its right-hand operand. Empty bits are always filled with zeros. This is the
equivalent of dividing the value by a given power of two.

Examples

Code Description

A[0] << 2 Returns A[0] multiplied by 4.
A[0] >> 2 Returns A[0] divided by 4.

 B14

Operator Group 6

Operator Type Name Used With

 < Binary. Less Than. Numerics, Strings.
 <= Binary. Less or Equal. Numerics, Strings.
 > Binary. Greater Than. Numerics, Strings.
 >= Binary. Greater or Equal. Numerics, Strings.
The inequality operators perform the specified comparison between their operands, and return 1
if the inequality holds, and 0 if it does not. For string values, the calculation is based upon a case-
sensitive ASCII comparison, such that “A” is considered less than “B”, and “B” is considered less
than “BB”.

Examples

Code Description

A[0] > 10 Returns 1 if A[0] is greater than 10.
Name < “Z” Returns 1 if Name is less than “Z”.

Operator Group 7

Operator Type Name Used With

 == Binary. Equal To. Numerics, Strings.
 != Binary. Not Equal To. Numerics, Strings.

The equality operators perform the specified comparison between their operands, and return 1 if
the condition holds, and 0 if it does not. For string values, the calculation is based upon a case-
sensitive ASCII comparison, so that strings are considered the same if and only if they contain the
exact same sequence of characters.

Examples

Code Description

A[0] == 10 Returns 1 if A[0] is equal to 10.
Name != “Mike” Returns 1 if Name is not equal to “Mike”.

Operator Group 8

Operator Type Name Used With

 & Binary. Bitwise AND. Integers.

The bitwise AND operator combines its two operands using the Boolean AND operation, whereby
a bit in the result is set if and only if both corresponding bits in the operands are set. This operator
is often used to select a number of bits from a value, or to turn a bit off by means of a bit mask.
Compare with the logical AND operator in Group 11.

Examples

Code Description

A[0] & 0xFF Returns the bottom byte of A[0].

 B15

Operator Group 9

Operator Type Name Used With

 | Binary. Bitwise OR. Integers.

The bitwise OR operator combines its two operands using the Boolean OR operation, whereby a
bit in the result is set if either or both of the corresponding bits in the operands are set. This
operator is often used to combine two bit-mapped values, or to turn a bit on by means of a bit
mask. Compare with the logical OR operator in Group 12.

Examples

Code Description

A[0] | 0x01 Returns A[0] with bit 0 turned on.

Operator Group 10

Operator Type Name Used With

 ^ Binary. Bitwise XOR. Integers.

The bitwise XOR operator combines its two operands using the Boolean Exclusive OR operation,
whereby a bit in the result is set one and one alone of the corresponding bits in the operands are
set. This operator is often used to invert the state of a given bit or bits by means of a bit mask
containing the bits to be changed.

Examples

Code Description

A[0] ^ 0x10 Returns A[0] with bit 4 inverted.

Operator Group 11

Operator Type Name Used With

 && Binary. Logical AND. Numerics.

The logical AND operator returns a value of one if both of its operands are not equal to zero, or a
value of zero in all other cases. Unlike the bitwise AND operator, it does not consider the
individual bits of its operands, but simply whether they are true or false. This is the operator you
should use to combine conditions in The If-Else Statement and the like, and in all cases where a
bitwise operation is not specifically needed.
NOTE: EDICT-97’s compiler will always execute both operand of this operator, even if the first
one is false. This is different from the behavior of “C” or Java compilers, which will stop executing
the operands once the result has become clear.

Examples

Code Description

!V1 && V2 > 1 Return 1 if V1 is zero, and V2 is greater than 1.

 B16

Operator Group 12

Operator Type Name Used With

 || Binary. Logical OR. Numerics.

The logical OR operator returns a value of one if either of its operands are not equal to zero, or a
value of zero in all other cases. Unlike the bitwise OR operator, it does not consider the individual
bits of its operands, but simply whether they are true or false. This is the operator you should use
to combine conditions in The If-Else Statement and the like, and in all cases where a bitwise
operation is not specifically needed.
NOTE: EDICT-97’s compiler will always execute both operands of this operator, even if the first
one is true. This is different from the behavior of “C” or Java compilers, which will stop executing
the operands once the result has become clear.

Examples

Code Description

!V1 || V2 > 1 Return 1 if V1 is zero, or V2 is greater than 1.

Operator Group 13

Operator Type Name Used With

:= Binary. Assignment. Anything.
op= Binary. Compound Assign. Anything.

The assignment operator is used to assign a value to a modifiable value. It places the value of its
right-hand operand into the location specified by the left-hand operand, and returns a value equal
to the new value. Returning a value like this lets you “chain” assignments together, as shown in
the second example below. The operator is also special in that it is evaluated from right-to-left,
again to allow chaining.
The compound assignment operator is really a family of operators. The “op” in the syntax shown
above should be replaced by any binary operator detailed in the early groups, with the exception
of the logical OR and AND operators. The operator takes the value in its two operands and
applies the operator in question, before storing the value in the left-hand operand. The code “A
op= B” is thus equivalent to “A := A op B”.

Examples

Code Description

A[0] := 10 Sets A[0] equal to 10.
V1 := V2 := 0 Sets both the variables V1 and V2 to zero.
B[0].2 := 1 Turns on bit 2 in register B[0].
B[0].2 := 0 Turns off bit 2 in register B[0].
C[0] *= 10 Sets C[0] equal to itself multiplied by 10.
C[0] += 40 Sets C[0] equal to itself plus 40.
C[0] ^= 0x04 Flips the value of bit 2 of C[0].

 B17

Operator Group 14

Operator Type Name Used With

 , Binary. Sequence. Anything.

The sequence operator returns the value of its second operand, after evaluating the operands in
order. The operator is not used within “normal” expressions, but may be used to include two
separate sections of code where only a single expression is expected, such as in expressions
forming a” for” statement.

Examples

Code Description

A[0]++, B[0]++ Increments A[0] and B[0], returning B[0].

Part 3: System Variables
EDICT-97 provides a number of system variables, which are used either to reflect the state of the
system, or to modify the behavior of the system in some way. The former type of variable will be
read-only, while the latter type can have a value assigned to it. Follow the link below to get a full
list of system variables, with examples as to their use.

System Variable Index
The table below lists the available system variables…

Variable Name Page

ActiveAlarms B17

CommsError B18

CommsUpdate B18

Date B18

Day B19

DispBrightness B19

DispContrast B19

DispInvert B19

FALSE B20

Hours B20

IsBatteryLow B20

IsSirenOn B20

Mins B20

Month B21

Secs B21

TRUE B21

UnacceptedAlarms B22

Year B22

 B18

ActiveAlarms

Data Type

16-bit Unsigned.

Write Status
read-only.

Description
The number of alarms currently active within the system.

CommsError

Data Type
32-bit Unsigned.

Write Status
read-only.

Description
Bit 0 of this variable will be set if any Comms errors are present. Bits 1
through 20 will be set if the corresponding device in the device table is
not responding to any Comms requests, and is thus assumed to have
been disconnected. Bit 30 will be set if there are any Comms errors
associated with the user-defined block table, while bit 31 will be set if
there are Comms errors associated with the automatic block table.

CommsUpdate

Data Type
16-bit Unsigned.

Write Status
read-only.

Description
The current Comms update time in milliseconds.

Date

Data Type
16-bit Unsigned.

Write Status
read-only.

Description
The day-of-the-month element of the current time and date.

 B19

Day

Data Type
16-bit Unsigned.

Write Status
read-only.

Description
The day-of-the-week element of the current time and date.

DispBrightness

Data Type
16-bit Unsigned.

Write Status
Read-Write.

Description
The brightness of the terminal’s display, in percentage terms. Not all
terminals are capable of controlling their display brightness, and some
may only support on and off operation. The terminal will generally honor
the setting to the best of its ability.

DispContrast

Data Type
16-bit Unsigned.

Write Status
Read-Write.

Description
The contrast of the terminal’s display, in percentage terms. 50% is the
default setting, to be used in “standard” viewing conditions. Not all
terminals are capable of controlling their display contrast. The terminal
will generally honor the setting to the best of its ability.

DispInvert

Data Type
16-bit Unsigned.

Write Status
Read-Write.

Description
If this variable is set to a non-zero value, the terminal’s display will be
inverted. Not all terminals are capable of supporting this feature. The
terminal will generally honor the setting to the best of its ability.

 B20

FALSE

Data Type
16-bit Unsigned.

Write Status
read-only.

Description
A constant value of 0.

Hours

Data Type
16-bit Unsigned.

Write Status
read-only.

Description
The hours element of the current time and date.

IsBatteryLow

Data Type
16-bit Unsigned.

Write Status
read-only.

Description
A non-zero value if the terminal’s battery is low, or zero otherwise.

IsSirenOn

Data Type
16-bit Unsigned.

Write Status
read-only.

Description
A non-zero value if the internal sounder is activated, or zero otherwise.

Mins

Data Type
16-bit Unsigned.

Write Status
read-only.

Description
The minutes element of the current time and date.

 B21

Month

Data Type
16-bit Unsigned.

Write Status
read-only.

Description
The month element of the current time and date.

Param

Data Type
32-bit Unsigned.

Write Status
read-only.

Description
A variable that temporarily holds a value representing the key pressed, or
touch-screen location.

pi

Data Type
Float

Write Status
read-only.

Description
The value of PI (3.14159....)

Secs

Data Type
16-bit Unsigned.

Write Status
read-only.

Description
The seconds element of the current time and date.

TRUE

Data Type
16-bit Unsigned.

Write Status
read-only.

Description
A constant value of 1.

 B22

UnacceptedAlarms

Data Type
16-bit Unsigned.

Write Status
read-only.

Description
The number of active alarms which have not been accepted.

Year

Data Type
16-bit Unsigned.

Write Status
read-only.

Description
The 2 digit year element of the current time and date.

Year4

Data Type
16-bit Unsigned.

Write Status
read-only.

Description
The 4 digit year element of the current time and date.

 C1

Section C - Error Codes

Lexical Error Index

This table contains all the error messages, which can be generated by
the low-level section of the compiler known as the “lexical analyzer”.

Character Constant Too Long Empty Character Constant Identifier Too Long

Invalid Decimal Point Invalid Digit in Constant Invalid Digit in Escape
Sequence

Invalid Escape Sequence Invalid Operator Invalid Suffix on Constant

New Line in Character
Constant

New Line in Escape
Sequence

New Line in String Constant

No Digits After Decimal Point Open Block Comment Overflow in Escape
Sequence

Repeated Suffix on Constant String Constant Too Long Unexpected Character

Internal Error

An unexpected error has occurred within the lexical analyzer, the
component of the compiler which breaks-up the incoming stream into
“tokens” to be processed by the rest of the compiler. This error may be
caused by a lack of memory, or by incorrect installation of the software. It
may also be caused by a bug within the software, and we would thus ask
you to send a copy of the file, which caused the problem to our Technical
Support department for study.

Invalid Decimal Point

You have entered a decimal point within a numeric constant, which has a
prefix indicating that it is not a decimal number. Decimal points are not
allowed within hexadecimal, octal or binary constants.

Invalid Digit in Constant

You have entered a numeric constant, which contains a character, which
is not valid when considered along with any radix specifier you may have
used. For example, you may not use the characters “A” to “F” in anything
other than hex constants, or the digits “8” or “9” within octal constants.

 C2

Repeated Suffix on Constant

You have used the same suffix twice on a numeric constant. The “U”
suffix is used to specify an unsigned number or the “L” suffix is used to
specify a 32-bit number, and each should be used at most once on a
given constant.

Invalid Suffix on Constant

You have used an invalid suffix letter on a numeric constant. The only
valid suffixes are the “U” suffix used to specify an unsigned number and
the “L” suffix used to specify a 32-bit number. It is possible that you have
omitted a character between a constant and some identifier, thus fooling
the compiler into thinking that the first character of the latter is intended
to be a suffix.

No Digits After Decimal Point

You have entered a numeric constant, which contains a decimal point,
but you have not entered any digits after that point. Although this is
technically a correctly formed number, it has been rejected for reasons of
clarity and to ensure that you indeed wish to use a floating point number.

Character Constant Too Long

You have introduced a character constant using the single quote or
apostrophe character, but the constant appears to contain more than one
character. Perhaps you intended to enter a string constant, or you have
neglected to include the closing quote.

String Constant Too Long

You appear to have entered a string constant containing more than 128
characters. Strings greater than this length cannot be handled by this
version of the compiler. It is also possible that you have missed off the
closing quote, thus causing the compiler to misjudge how much of your
code you wish to include in the string constant.

Identifier Too Long

You have entered an identifier that is greater than 30 characters in
length, and which is thus beyond the capability of the compiler. It is
possible that you did not intend this to be an identifier, and you should
check the code around this error for missing operators or other
punctuation. If you wanted to enter a string constant, remember to
include the opening and closing quotation marks.

 C3

Invalid Operator

The compiler has not been able to recognize what appears to be an
operator within your code. This error message often appears as a result
of general typing errors, which confuse the compiler into thinking you
wished to include an operator. You should thus check your code for such
mistakes, and for punctuation that is not required in the relevant context.

Unexpected Character

The lexical analyzer has not been able to recognize the character in
question as introducing any of the language elements it can process. It is
possible that you have tried to use an invalid operator, or that you have
made some form of typing mistake. Remember that the “C” and Java
operators used by EDICT-97 are different from those used by other
programming languages such as Basic.

Open Block Comment

You have started a block comment using the /* character sequence, but
the compiler cannot find a matching */ sequence before the end of the
code. This has most likely been caused by your forgetting to include
such a sequence, or by starting a comment by mistake.

Empty Character Constant

You have introduced a character constant using the single quote or
apostrophe character, but then immediately closed it using the same
character, without actually including the character that defined the
constant. It is not possible to have an “empty” character constant. If you
wish to have such a thing, consider using a space or the value 0 to
represent the empty state.

New Line in Character Constant

You have introduced a character constant using the single quote or
apostrophe character, but then immediately followed it with a new-line.
Character constants cannot be split across line boundaries in this way.
This error can be caused by trying to include a backslash in a character
constant, and forgetting that such characters should be doubled-up to
avoid introducing an escape sequence.

New Line in String Constant

You have introduced a string constant using the double quote character,
but then immediately followed it with a new-line. String constants cannot
be split across line boundaries in this way. This error is often caused by
accidentally omitting the closing quote, causing the compiler to think that
the whole of the line in question forms part of the constant. It can also be
caused by trying to include a backslash at the end of the string constant,

 C4

and forgetting that such characters should be doubled-up to avoid
introducing an escape sequence.

New Line in Escape Sequence

You have introduced a so-called escape sequence by using the
backslash character within a string or character constant. These
sequences are used to include various special values in a constant, and
must not be interrupted by line breaks or other formatting characters.

Invalid Escape Sequence

You have introduced a so-called escape sequence by using the
backslash character within a string or character constant. These
sequences are used to include various special values in a constant, and
are formed by following the backslash with one of a number of
characters or a numeric value, but the character you have used is not
considered valid. This error is most often caused by trying to enter a
backslash into a string constant, something that is correctly done by
entering a pair of such characters.

Invalid Digit in Escape Sequence

You have introduced a numeric escape sequence by using the backslash
character within constant, and then by following that character with “x” or
a digit. The compiler has found a digit within the sequence that is not
valid in that context. The value in an “x” escape sequence must be two
digits of hex, while that in a simple numeric sequence must be three
digits of octal.

Overflow in Escape Sequence

You have introduced a numeric escape sequence by using the backslash
character within constant, and then following that character with a digit.
The compiler has taken the octal value of the following digits, and the
value has exceeded the decimal value of 255. Since this is the largest
value suitable for inclusion in a string or character constant, this is an
invalid sequence.

 C5

Compiler Error Index
This table contains all the error messages, which can be generated by
the high-level section of the compiler.

Ambiguous Operator Array as Operand Bit Reference Within Bit

Bit Reference Within Non-
Integer

Cannot Apply Index Operator Cannot Cast an Array

Cannot Cast to Double Cannot Perform Cast Empty Sub-Expression

Expression Has Side Effects Expression Too Complex Function Argument is Wrong
Type

Illegal Break Statement Illegal Case Statement Illegal Continue Statement

Illegal Default Statement Illegal Else Statement Index Expression is Array

Index Expression is Non-
Integer

Internal Error [1] Internal Error [2]

Invalid Bit Reference Index Invalid PLC Reference Missing Function Argument

Operand is Wrong Type Operand Must be Writable Operands Not Same Type

Sign Prefix with Unsigned
Constant

Statement Has No Effect Statement Needs Constant

Statement Needs Integer Too Many Function
Arguments

Unexpected Token

Unknown Function Unknown Identifier Wrong Number of Arguments

Internal Error

An unexpected error has occurred within the compiler core. This error
may be caused by a lack of memory, or by incorrect installation of the
software. It may also be caused by a bug within the software, and we
would thus ask you to send a copy of the file, which caused the problem
to our Technical Support department for study.

Unexpected Token

The compiler has encountered a token, which it was not expecting, given
the current context. The error message will tell you what the compiler
has found, and what it was expecting to find. You should examine the
code around the position of the error to try and locate the mistake.

Array as Operand

The operator indicated in the error message cannot accept an array
name as an operand. The array name causing the error could be either a
single letter representing a Comms block, or the name of global or local
data file. This error can be caused by incorrectly formatting the indexing
expression that usually follows an array. Remember to use square
brackets in such expressions.

 C6

Operand Must be Writable

You have used an operator who changes data, but the operand to be
changed is not an expression to which a value can be assigned. In order to
change a data item, EDICT-97 must be able to resolve the expression in
question to a Comms block reference, a variable or the element of a data file.

Operand is Wrong Type

You have used an operator with operands of a type, which the operator is not
able to process. For example, you may have tried to subtract two strings, or
perform a bitwise operation on a floating point value. You should check the
operands to ensure that they are of the type you intended, and you should
make sure that the operator itself is correct.

Operands Not Same Type

You have used a binary operator with operands which are not of the same
basic type. For example, you may have tried to compare a string and a
numeric value, or you may have tried to write a string to a numeric location.
EDICT-97 will perform automatic conversions between different sized
integers and floating point types, but cannot convert to and from strings. You
should check the operands to ensure that they are of the types you intended,
and you should make sure that the operator itself is correct.

Function Argument is Wrong Type

You have passed an argument to a function, but the argument is not of the
basic data type required. EDICT-97 will perform automatic conversions
between different sized integers and floating point types, but cannot convert
to and from strings. You should check the arguments of the function to
ensure that they are of the types you intended.

Function Argument is Wrong Type

You have passed an argument to a function, but the argument is not of the
basic data type required. EDICT-97 will perform automatic conversions
between different sized integers and floating point types, but cannot convert
to and from strings. You should check the arguments of the function to
ensure that they are of the types you intended.

Wrong Number of Arguments

You have invoked a function with the wrong number of arguments. Other less
obvious causes of this error message involve using mismatched round
bracket within a function argument, or failing to include the final bracket of
the function invocation. You should check the definition of the function you
are attempting to invoke, and the syntax of the invocation itself.

 C7

Cannot Apply Index Operator

You have attempted to use the indexing operator on a data item, which is
not a Comms block, a data file or a string expression. The indexing
operator is introduced by an opening square bracket, and cannot be
applied to any other data types. This error can be caused by using a
variable name in place of a Comms block name, or by using a square
bracket instead of a round one when attempting to invoke a function.

Empty Sub-Expression

EDICT-97 is attempting to compile a sub-expression within either round
or square brackets, but has found the closing bracket instead of any
code. This error can occur with parenthesized expressions, with indexing
expression, or when using a cast operator. You should check your code
and make sure that you have included a valid expression within the
brackets.

Unknown Identifier

You have entered a name, which does not correspond to any variable or
database item known to EDICT-97. You may already have been offered
the chance to create an item to correspond to the unknown name, and
you will have declined that offer. This error can also be caused by
omitting the round bracket from a function invocation, causing EDICT-97
to assume you are referring to something other than a function. You
should check your typing carefully, and make sure you are using a valid
name. Remember that EDICT-97 is not case-sensitive as far as
identifiers are concerned, and so names differing in case alone will be
considered the same.

Unknown Function

You have tried to invoke a function, using a name, which does not
correspond to any of the functions known to EDICT-97. This error can
also be caused by using a round bracket after an array or Comms block
name, in place of the square bracket used to introduce an indexing
expression. You should check your typing carefully, and make sure you
are using a valid name. Remember that EDICT-97 is not case-sensitive
as far as function names are concerned, and so names differing in case
alone will be considered the same.

Missing Function Argument

You have omitted one of the arguments of the function you are invoking,
either by ending the code after the opening round bracket, or by ending
the code after the comma, which follows an argument. As EDICT-97
parses all the arguments in your code before checking that you have
supplied the number required by the function, this error can be caused
by simply omitting the closing round bracket at the end of a function
invocation, even if that function does not need to take any further
arguments.

 C8

Too Many Function Arguments

EDICT-97 cannot handle function invocations with more than nine
arguments. As no EDICT-97 functions need this many arguments, this
error will most likely have been caused by omitting the closing round
bracket within a function invocation, which forms the argument of another
function.

Invalid PLC Reference

You have entered a direct PLC reference, but EDICT-97 cannot parse
the string within the square brackets. This error can be caused by using
an invalid address for the selected device, by using an invalid device
prefix, or by using an invalid type prefix. Remember that some older PLC
drivers require an address to be aligned to some fixed multiple in order to
be valid. For example, bit data types may have to be aligned to 16-bit
boundaries.

Sign Prefix with Unsigned Constant

You have used the unary plus or unary minus operator in front of a
constant which has the “U” suffix to indicate that it is unsigned. This
contradiction should be resolved by either removing the operator, or
removing the suffix.

Ambiguous Operator

You have used the single equals-sign operator, “=”. Although this operator
is used within “C” and Java to indicate assignment, EDICT-97 considers
the operator too ambiguous, in that many people will attempt to use this
operator for both assignment and comparison. You should use “==” for
comparing data items, and “:=” for performing assignments operations.

Bit Reference Within Non-Integer

You have attempted to use the bit selection operator with a non-integer
left-hand operand. For example, you cannot select bits from within
floating point values, from arrays, or from named database items such as
display pages. This error can also be caused by including two decimal
points within a number, as EDICT-97 will assume the second one is
meant to be the bit selection operator.

Bit Reference Within Bit

You have attempted to use the bit selection operator with a left-hand
operand that is already a single bit. This will occur if you apply the bit
reference operator twice, or to a Comms block element which refers to
bit data within the PLC’s memory. This error will not occur in all such
circumstances, however, as EDICT-97 will often treat bit data as a 16-bit
unsigned value and “forget” about its real size.

 C9

Invalid Bit Reference Index

You have attempted to use the bit selection operator with a right-hand
operand, which is not an integer. As an example, the value used to select the
bit to be examined cannot be a floating point value. This error is normally
caused by a simple typing error, such as using a period instead of a comma.

Index Expression is Array

You have used an array name as the indexing expression included within a
pair of square brackets. An array name on its own does not make sense in
this context, and must be followed by its own indexing expression to select
an array element. This error can be caused by using a closing square
bracket in place of an opening one, as in “A[A]0]]”.

Index Expression is Non-Integer

You have used a non-integral value as the indexing expression included
within a pair of square brackets. You cannot use a floating point value in this
context, or any complex type such as a string or display page name. If you
wish to use a floating point value, you must cast it to an integer first.

Cannot Cast an Array

You have attempted to use a type cast sequence on an array name. You can
only apply a cast to an individual data item, such as an array element or a
variable. This error is most likely to have been caused by a typing error, as
operator precedence generally ensures the cast is applied to the correct item.

Cannot Cast to Double

Casting to double-precision floating point is not supported.

Cannot Perform Cast

The cast operation cannot be performed, as conversion from the source data
type to the target data type is not supported. For example, you cannot cast a
string to a numeric value, or numeric value to a string. In general, casting can
be performed between any of the numeric data types, but not between the
other more complex types.

Illegal Break Statement

You cannot use the “break” statement except within a loop construct or within
the body of a “switch” statement. This error is sometimes caused by the
mistaken use of curly braces to group program statements, thus fooling
EDICT-97 into thinking that the statement is outside the intended group.

 C10

Illegal Continue Statement

You cannot use the “continue” statement except within a loop construct.
This error is sometimes caused by the mistaken use of curly braces to
group program statements, thus fooling EDICT-97 into thinking that the
statement is outside the intended group.

Illegal Case Statement

You cannot use the “case” statement except within the body of a “switch”
statement. This error is sometimes caused by the mistaken use of curly
braces to group program statements, thus fooling EDICT-97 into thinking
that the statement is outside the intended group.

Illegal Default Statement

You cannot use the “default” statement except within the body of a “switch”
statement. This error is sometimes caused by the mistaken use of curly
braces to group program statements, thus fooling EDICT-97 into thinking
that the statement is outside the group within which it should be found.

Illegal Else Statement

You have attempted to use the “else” statement without a corresponding
“if” statement. This error is sometimes caused by the mistaken use of curly
braces to group program statements, thus fooling EDICT-97 into thinking
that the “if” statement has terminated some lines earlier than intended.

Statement Has No Effect

The code you have entered as a statement within the program does not
actually do anything. In order to be valid, a statement must either change
data, or call a function, which causes EDICT-97 to perform some action.
Examples of lines of code which cause this error are “1 + 2;” and “Min(10,
20);”. This error can be caused by including a semi-colon within an
expression, thus fooling EDICT-97 into terminating the statement earlier
than intended.

Statement Needs Constant

The numeric expression required by the current statement must evaluate to
a constant. This error can occur with the “case” statement, which imposes
this restriction to allow better optimization of its execution.

Statement Needs Integer

The numeric expression required by the current statement must evaluate to
an integer. This error can occur with a loop construct, or with the controlling
expression of a “switch” statement. If you need to use a floating point value
in any of these contexts, use a type cast to perform the conversion.

 C11

Expression Has Side Effects

This error occurs when the expression used with a “case” statement
changes data or calls a function which performs an action. The restriction
whereby all such expressions must be constants is not always sufficient
to catch such errors, as an expression like “A[0] := 10” is constant and
yet changes data.

Expression Too Complex

You have entered an expression, which is too complex to parse. This
error occurs when you have too many levels of nested brackets, too
many nested function calls, or an expression wherein the operator
priorities mandate that many intermediate results are stored for later use.
You should simplify the expression, or split it into two sections.

D1

Section D - Driver Selections

Communications

EDICT-97’s communications architecture is split into three sections…

1. The Comms port table is first of all used to define which Comms drivers are to be used on which
of the interface terminal’s Comms ports. Most terminals have at least three ports, and so can run
up to three Comms protocols at the same time. Note that some drivers, such as those for printers
and the like, do not support data communications.

2. The Comms device table is then used to specify the remote devices to be accessed. For simple
point-to-point protocols, it is normal to define one device for each Comms driver. For network
protocols, any number of devices may be defined, each being identified with a protocol-specific
network station address.

3. The Comms block table is finally used to define the data to be transferred between the interface
terminal and the remote devices. Each of the 26 blocks can transfer any number of registers
between the terminal and a single device, with the direction and rate of transfer being
configurable as required.

Automatic Configuration
If you find the process of setting up the three layers of the Comms structure rather daunting,
EDICT-97 contains a mechanism whereby it will automatically configure the necessary items based
upon the address entered into the Comms block table. EDICT-97 will offer any address without a
corresponding Comms device to every driver available, and then produce a list of those, which are
able to handle the address. You can then select the driver you wish to use, and EDICT-97 will
automatically bind the driver to a suitable Comms port, and create a default device using that
driver.

Direct PLC References
As well as the Comms block table, EDICT-97 also allows you to enter direct references to data
items in remote devices. Such direct references are entered by surrounding the required address in
square brackets, with EDICT-97 automatically building its own automatic block table to service
these requests. The automatic configuration facility described above also works with direct
references, so simply typing something like “[N7:100]” into an expression is sufficient to configure
all of the Comms system.
Note that although direct references are the quickest way to get started, explicit Comms blocks
allow a greater degree of control, and make it much easier to switch from one Comms driver to
another at a later date. Explicit Comms blocks also allow indirect addressing, whereby one data
item is used to select an element from a Comms block. This facility is not supported when using
direct references.

Connecting Your HMI to a PLC

Example: Connecting your HMI to a GE Fanuc Series 90.
(Start with a New File)

Accessing a Register in your PLC
From the GE Fanuc page of Section D, you will see that the Digital Output Register Address starts
at %Q0001. Choose Comms Block from your Contents Window and the following will appear.

D2

Enter the following: Access (Both), Size (3), Address (%Q0001)

After you Enter these parameters, the Address %Q0001 triggers the following Window to appear.

D3

 %Q0001 is a valid PLC Address for CEGELEC and the GE Fanuc 90 Series. Choose GE Fanuc
90 Series and hit ENTER. EDICT-97 will automatically configure your HMI Communications
(Comms Blocks, Comms Ports and Comms Devices) for your GE Fanuc Series 90 PLC.

Return to a Display Page and Enter the following:

Download the file to your HMI. You should be able to turn the GE Fanuc Series 90 outputs on and
off at this time through the front panel.

D4

Connecting Your HMI to Red Lion Controls products

The following simple example shows a Paradigm HMI panel connected to 2 Red Lion Controls’
Legend Series Batch Counters (LGB). The Paradigm to RLC RS-485 Connection drawing located
later in Section D was used for wiring the 3 units properly.

Configure the Comms Port first.

Choose the Red Lion Controls Instrument option from the pull down Driver options. Assign this to
the RS-485 Comms Port.

The Communication parameter settings (baud rate, parity, etc.) default settings will match the LGB
default settings. If you want to change these settings in the HMI, double click on the Data Format
Section and the following window appears.

D5

Since you have 2 devices (the 2 LGB’s) on the RS-485 of your HMI, you will need to give them
different addresses or “Drops”. Go to the Comms Devices category and do the following.

You can add additional devices easily by giving them different addresses or drops.

To insert the LGB count values into a page on your HMI, do the following.

D6

The letter E inserted into the address designates that the process value from the LGB is the
variable to be inserted into this page. See the Model LGB Instruction Manual for additional
information on other Value Identifiers.

Troubleshooting Communications

EDICT-97 has several facilities to troubleshoot communication problems.

LED’s
There are two LEDs(1 green/1 red) on the back of each Paradigm HMI panel.

D7

State Status
Red LED Green LED
Blinking fast Blinking fast HMI communicating properly with device
Solid on - No Communication link (check wiring between HMI/device)
Always off Blink occasionally Device not understanding HMI (check Baud rate, parity, etc.)

Blink occasionally Blink occasionally Requested Data not available

The LED’s pertain to Ports 2 and 3 on the PLC communication connector (not the
programming port)

CommsErrors

EDICT-97 allows you to insert an Integer value field named CommsErrors on your displayed page
which indicates Communication error status. To insert this into a page, do the following.

Insert the CommsError Integer value on your display page. Choose the <16>0000h option for the
template. If you have proper communication between your HMI and the device the value of 0000h
will appear in that Integer field. A CommsError sets the least significant digit to 1 and the device
number (drop) that you are having difficulty communicating will set the relevant bit to 1.For
example, a CommsError of 0003h indicates that the CommsError is with Device 1; a CommsError
of 0005h indicates a CommsError with Device 2, etc.The CommsError Integer value monitors up to
20 devices.

D8

CommsUpdate

EDICT-97 allows you to insert an Integer value called CommsUpdate to display the communication
update in milliseconds. To insert this into your display page, do the following.

The page below shows a page with both the CommsError and CommsUpdate fields inserted for
troubleshooting.

D9

The Monitor function can be accessed from the menu line by selecting “Link”, and “Monitor”. This
function uses the Programming Port of the terminal to examine the data in the COMMS BLOCKS.

The Monitor display can show the data in Decimal, Binary, Octal, and Hexadecimal number
systems. It can display the data, depending upon the source, for all the defined data types, i.e.
signed, unsigned, string, etc.

D10

The Paradigm RS485/422 Port

To use the RS485/422 Port for RS485 communications; the following wiring applies.

The wiring above is for a Paradigm to DCE type device connection.
Note: Red Lion Controls products which have RS485 Comm ports are DCE type devices

The wiring above is for a Paradigm to DTE type device connection.

D11

Paradigm to Paradigm Communications - PCLink

Paradigm units can be configured to pass information to one another using PCLink protocol. They
can be bused using the RS485/RS422 ports, or daisy-chained using the RS232 ports. The
configuration is a master/slave connection, where one unit is the master, and it obtains data from
the slave or slaves it is connected to. In a daisy-chain, the units inside the chain are slaved to the
previous unit, and a master to the next. One end will be a master only, the other end will be only a
slave. For RS485/RS422, one unit will be the master, the others, slaves.

Configuring a MASTER

Using the Wizard
The Wizard that you can select when you first enter EDICT97 can configure your MASTER if you
want it to. However, most of the time, a user will use the Wizard to configure for the particular PLC
attached. Therefore, to additionally configure the PCLink communications, simply use the pictorial
presentation that follows.

Manual Configuration
This is the setup for a MASTER Device on Port 3:

Then configure your Communications Drivers:

In the above case, the Master will use Dev01 to collect data from the slave whose drop number is
1, and Dev02 to collect data from the slave whose drop number is 2.
The data reads and writes will take place according to the way the COMMS BLOCKS are
configured:

In the above case, the master will read slave 1's Comm Block A[0], and write to slave 1's Comm
Block B[0]. It will also read slave 2's Comm Block A[0], and write to slave 2's Comm Block B[0].
If the Size for Comm Block A of the master were 3, and the Address C5, the master would read (or
write, as the case may be) C[5], C[6], and C[7], of the slave whose address is 1.

D12

Configuring the Slaves

Using the Wizard
The Wizard that you can select when you first enter EDICT97 can configure your SLAVE if you
want it to. However, most of the time, a user will use the Wizard to configure for the particular PLC
attached. Therefore, to additionally configure the PCLink communications, simply use the pictorial
presentation that follows.

Manual Configuration

Selecting Edit on the right of the above screen will allow you to define the address of the slave:

D13

You do not need to configure anything in Comms Devices for the slave unit, unless it is attached to
a PLC. You do need to have Comms Blocks configure for the registers that the master is reading:

The above is compatible with the previous programming of the master. By writing values into A[0],
the master will have its A[0] (because of its Dev01, address A0) updated.

D14

Device Connections for PCLink

Using RS-232

Connecting RS-232 is easy. Using Port 2 of both units:

You can get cable number P895803Z to connect a port 2 to a port 1, or use a programming cable
(P890301Z) to connect port 1 to port 1.

Using RS-422

D15

General ASCII Frame
The General ASCII Frame Protocol is designed to permit communication to any device that
transmits and receives ASCII codes. It is capable of receiving ASCII strings, up to 256 characters
long, with or without a user-defined start character and/or a terminating character.
EDICT97 provides many ways of processing the string, from simple display to complex responses.
NOTE: General ASCII Frame is a slave protocol. Therefore it cannot be selected on the
same physical port as another driver. On the Paradigm units, Ports 2 and 3 are the same
physical port.

Using the Wizard
The Wizard that you can select when you first enter EDICT97 can configure your General ASCII
Frame protocol if you want it to. However, most of the time, a user will use the Wizard to configure
for the particular PLC attached. Therefore, to additionally configure the ASCII communications,
simply use the pictorial presentation that follows.

First, go to COMMS PORTS:

Select Edit, in the Configuration section of the window in order to configure the operation the way
you need it to work. You will get a window that looks like this:

D16

The Sync Character is the Start of Transmission character and is entered as a decimal value.
It is not included in the actual string placed in [RXDATA]. When Sync Character is Disabled, the
first character received is the first character of the string.
The End Character is the End of Transmission character and is entered as a decimal value. In the
above picture, 13 is entered which is the value of Carriage Return. If End Character is Disabled,
Maximum Length or Gap Timeout determine the end of the transmission.
Maximum Length will terminate the transmission when that length is reached, regardless of other
settings. It does not include the Sync Character.
Gap Timeout will also terminate the transmission, regardless of the other settings. It is defined in
milliseconds, from 0 to 9999. The above example shows a one second timeout. If no new
character is received within the Gap Timeout, the string will terminate.

Then define the appropriate Device in COMM DEVICES. This defines the internal memory storage
for the incoming data. This storage name is represented by [RXDATA]. There is also a counter
[RXCOUNT] that counts the number of strings received.

A simple string display can be accomplished by entering the following on a display page:

D17

A slightly more complex program might do the following:

By comparing [RXCOUNT] to a variable OldRxCount in the enable field of the Global
Event, the reception of a new string can be detected.

The above three screens, when combined with a General Text display of "LocalCopy" on a Display
page, will set "number" equal to one if the word "one" is received, and similarly for "two" and
"three". Otherwise, a string will cause number to equal 999. A user could program a statement
similar to :

if (LocalCopy == "one")
 {
 number := 1;
 gotopage(page1);
 }
where page one might display a menu for the operator.

D18

This page intentionally left blank.

D19

EDICT-97 Communication Drivers (as of March 04, 2002)

(Drivers are being constantly updated. Contact factory for latest additions.)

ACCU-SORT Systems Scanner

ACROLOOP Motion Controller

ADAM 4017-18 Input Module

ALFA LAVAL

ComLi Master
ComLi Slave

ALLEN BRADLEY
PLC-2 via DF1
PLC-5 via DF1
SLC via DF1
SLC via DH485
DF1 Program Through
MicroLogix via DF1

ALSTOM
Alspa Series via SNP
Alspa via SNP-X Master
Alspa via SNP-X Slave
GEM-80 J/K Master
GEM-80 J/K Slave
GEM-80 Program Port

ANIMATICS SmartMotor

ATLAS COPCO
DMC
Programmable Axis Manager

BANNER PresencePLUS Sensor

B&R Black PLC via CP-6X

BUHLER MYEB

CHEMRING Rectifier Controller

COMPUMOTOR 6000 Motor Drive

CONTREX DRIVE

CONTROL TECHNIQUES
Mentor II
Unidrive

CONTROL TECHNOLOGY Automation Controller

CROUZET RPX Series

DANFOSS VLT 6000 Drive

D20

DELTA
DVP Series
VFD Series (RTU)

DIGIPLAN Servo Drive

DURANT Ambassador Counter

ELECTROCRAFT
BRU Master
IQ Series

EUROTHERM Universal Master

EXTERNAL KEYBOARD
ASCII
RAFI
VT100

FESTO
FPC-Series
IPC Series
FEC Series

FURNESS CONTROLS FCO90-2 Detector

GE FANUC 90 Series via SNP

GENERAL ASCII FRAME (Receives asynchronous input of ASCII Strings)

GIDDINGS & LEWIS PiC90

HONEYWELL IPC 620 Series

IAI (INTELLIGENT ACTUATOR) Super SEL Controller

IDEC
FA-3S via FA-1 (PF2-CLA Link Adapter)
Micro 3 Series

IFM AS-I Programming Interface

IMO
G Series PLC
Jaguar CD Drive
Jaguar VX Drive
Jaguar VX-S Drive
K Series PLC
Nexus Series

INDRAMAT CLC Motion Control
 SYNAX via 3964R

KEB Frequency Inverter

KEYENCE KV Series

KLOCKNER MOELLER
PS-306
PS4-201

LENZE DRIVE
via LECOM
via LECOM Type II

D21

MATSUSHITA / AROMAT
FP Series
Program Through

MICROMO MVP Motion Controller

MINAS Series AC Servo Drive

MITSUBISHI
A Series via A1SJ71C24-R2 Communication Module
F2 Series
FX Series
FX Series Program-Through

MODBUS MODICON
ASCII Master
ASCII Slave
RTU Master
RTU Slave
Universal Master
Extended Universal Master

OMRON
Sysmac C-Series
Sysmac Program Through

OPTIMISED CONTROL MINT

PACIFIC SCIENTIFIC
OC930
PC830 Servo Drive

PARKER 6K Series Motion Controller

PCLINK MASTER (Master for Paradigm to Paradigm communications)

PCLINK SLAVE (Slave for Paradigm to Paradigm communications)

PLC DIRECT
Koyo via DirectNET
Koyo via K-Sequence

PROFIBUS Network

QUICKSILVER SilverMax

RED LION CONTROLS INSTRUMENTS

RED LION CONTROLS INSTRUMENTS via MODBUS

ROLL-YOUR-OWN-PROTOCOL

SABROE COMSAB II Module

SIEI DRIVE via SLINK3

SIEMENS / SIMATIC / TEXAS
S7 via FreePort
S7 via MPI Adapter
S7 via PPI
TI-325 and TI-330
TI-500 Series

D22

SIMOVERT P via USS

SIMPLE ASCII PRINTER

SPRECHER & SCHUH SESTEP

SQUARE-D SYMAX Series

TELEMECANIQUE UNI-TELWAY

TOSHIBA
EX Series
G3 Tosvert-130 Inverter
T2 Series

UNITRONICS M90

WEST INSTRUMENTS 6100

WMCU CONTROLLER Weather Monitoring & Control Unit

YASKAWA

MP Series Controller
Sigma II Indexer (JUSP-NS600)

04 March 2002

D23

Paradigm Cable Guide (as of March 04, 2002)

(Contact factory for latest additions.)



PARADIGM
P890301Z (Supplied with SFEDT Development Kit) RJ-11 - RS232 for

programming the Paradigm with PC or for RS232 to 9 pin female
connection to Paradigm Port 1

P890301C Cable Adapter, RJ-11 Jack to DB-9 (cable not included)
P890301J RJ-11 to RJ-11 (used for communications between P890301J Paradigm’s Port 1

and the Profibus Host Adapter, PAPBH000)
P895803Z PCLink, Paradigm Port 1 to Paradigm RS232 port

(unit to unit programming link)
P890806Z Cable Adapter, Paradigm Port 1 RJ-11 to any 10-position RS232

Communication Cable
P890807Z Cable Adapter, Paradigm Port 1 RJ-11 to any 5-position RS232

Communication Cable
P890808Z Cable Adapter, Paradigm Port 1 RJ-11 to any 10-position RS232

Communication Cable, DIN Rail Mount



ALLEN BRADLEY
P895005Z SLC500 via DF1 (RS232 9 pin Female)
P895006Z PLC-5 via DF1 (RS232 25 pin Male)
P895007Z PLC-2 via DF1 (RS232 15 pin Male)
P895013Z SLC500 via DH485 (DH485 RJ-45)
P895047Z Micrologix (Series C and higher) via DH485 through

1761-CBL-PM02 (RS232 9 pin Male)



BANNER
P895064Z PresencePLUS Sensor


CEGELEC (Alstom)

P895016Z Alspa 80-35 (RS422 15 pin male)



DELTA
P895063Z DVP Programming Port


GE FANUC

P895015Z Series 90 (RS422 15 pin Male)
P895057Z CMM311 (RS422 25 pin Male)



GENERIC
P895047Z RS232 9 pin Male
P895058Z RS232 to bare wires
P895059Z RS422/RS485 to bare wires



HONEYWELL
P895027Z IPC620 (RS422 25 pin Male)



IDEC
P895028Z FA Series via FA-1 (RS232 25 pin Male)
P895045Z Micro 3 (RS485 8 pin Male Mini-DIN)
P895061Z Micro3C (RS232 8 pin Male Mini-DIN)



D24

IMO
P895049Z Nexus (RJ-45)



KEYENCE
P895018Z KV Series (RS232 RJ-11)



MATSUSHITA / AROMAT
P895031Z FP Series (RS232 9 pin Male)
P895062Z FP0
P895047Z FP0 via Programming Cable
P895047Z FP1 Series via AFP15201-US9 cable (RS232 9 pin Male)



MITSUBISHI
P895002Z A Series via A1SJ71C24-R2 Card (RS232 9 pin Male)
P895033Z A Series (RS422 - Wire Connection)
P895003Z F2 Series (RS232 25 pin Male)
P895001Z FX Series (RS422 25 pin Male)
P895004Z FX0 & FX0N (RS422 8 pin Male Mini-DIN)



MODBUS MODICON See also Square-D and Telemecanique
P895019Z RS232 9 pin male
P895060Z TSX Micro, Nano, Premium (RS485 8 pin Male Mini-DIN)



OMRON SYSMAC
P895021Z C200H or LK201 (RS232 25 pin male)
P895047Z CP Series through CQM1-CIF02 Cable (RS232 9 pin male)
P895047Z CQ Series through CQM1-CIF02 Cable (RS232 9 pin male)
P895052Z CQ Series (RS232 9 Pin male)
P895052Z CP Series through CPM1-CIF01 Adapter (RS232 9 pin male)
P895052Z C200HS (RS232 9 pin male)



OPTIMISED CONTROL
P895022Z MINT (RS422 9 pin female)



PLC DIRECT
P895030Z Koyo 205 (RS232 RJ-11)
P895046Z Koyo 405 via RS232(RS232 25 pin Male)



RED LION CONTROLS
P893805Z MODBUS RS485 (RJ-11)



SCADA
P895026Z to PC



SIEMENS / SIMATIC / TEXAS
P895012Z CP525 SI (RS422 15 pin Male)
P895046Z TI435 (RS232 25 pin male)
P895047Z S7 Direct connection (RS232 9 pin male)
P895048Z S7 through PC/PPI Programming Cable (RS485 9 pin male)
P895053Z S7 via MPI Adapter (included with cable) (RS232 9 pin male)
P895053Y S7 via MPI Adapter (MPI not included) (RS232 9 pin female)
P895055Z 545/555 via RS232 (9 pin female)
P895056Z 545/555 via RS422 (9 pin female)



D25

SPRECHER & SCHUH
P895017Z 390 (RS232 15 pin male)



SQUARE-D
P895008Z Symax Series via Programming Port (RS422 9 pin male)



TELEMECHANIQUE
P895023Z TSX (RS485 15 pin male)



TEXAS INSTRUMENTS
P895024Z 545 (RS232 9 pin male)
P895043Z 545 (RS422 9 pin male)



TOSHIBA
P895009Z EX100 and M Series (RS422 to wire connection)
P895010Z T2 (RS422 15 pin male)
P895011Z T1 (RS232 8 pin Mini-DIN)



YASKAWA
P895054Z MP930 (RS232 9 pin male)
P895065Z JUSP-NS600 RS232 3M
P899065Z JUSP-NS600 RS232 custom length
P895066Z JUSP-NS600 RS485 3M
P899066Z JUSP-NS600 RS485 custom length



04 March 2002

 E1

Section E (Graphic Units)

In addition to all the features of the character-based units, the Graphic units will provide
exceptional value in displaying trend graphs, process schematics and flow, and others, limited
only by the imagination of the designer. Color Graphic units support 16 color Animation objects,
which adds to the flexibility of page design. EDICT-97’s extensive Library of predefined objects
along with the ability to create custom animation macros makes page creation easy. Color
Graphic units also feature dynamic PowerPoint type page transitions. These transitions can add
to realistic representations of machines, large plants, etc.. Touch units feature the ability to make
any object placed on a page a touch sensitive input. Any of EDICT-97’s Actions (See The Action
Builder, Page 32) can be programmed to occur once an object is pressed, maintained or
released.

Accessing the Graphics Layer

Edit the
Graphics
Layer

 E2

The following ToolBoxes appear
Color Graphic Unit

Monochrome Graphic Units

 E3

The Graphics Animation Toolbox

Insert Bitmap

Insert Macro
from Library

Insert Rotary Pointer

Insert Shadow

Insert Integer Value

Insert Horizontal Scale

Insert Vertical Scale

Insert Vertical Fill

Insert Horizontal Fill

Insert Line

Insert Triangle

Insert Rectangle

Insert Disk

Selection Mode

Insert Frame

Lock Insert Mode

Insert Circle

Insert Touch Pushbutton

 Tan

Insert Wedge

Insert Horizontal

Bar Graph

Insert Vertical

Bar Graph

Insert Status Text Insert other Graphical Text

Insert Time and Date

Insert Rotary Scale

Insert Tank

Insert Line Graph

Insert Trend

 E4

Items from the Animation ToolBox
The tables below list the various animation items that EDICT-97 supports…

Values and Text

Name Description For Graphic Layer Properties see Page

Integer Value Displays an integer value E49

Real Number Displays a fixed point real number. E50

Fixed Text Displays a fixed text string. E52

Status Text Displays one of two messages. E53

Quad Text Displays one of four messages. E54

Message Text Displays a message from a numbered list. E56

Decode Text Displays a message from a condition list. E58

General Text Displays a general string expression. E59

Time & Date Displays the current time and/or date. E60

Basic Figures

Name Description For Graphic Layer Properties see Page

Line A line between two points. E61

Frame A rectangular frame. E62

Rectangle A solid rectangle. E62

Shadow A rectangular frame with a drop shadow effect. E63

Wedge A solid triangle within a defined rectangle. E63

Touch Push Button From EDICT-97’s object library. E19

Circle An outline circle. E63

Disk A solid circle. E64

Fills

Name Description For Graphic Layer Properties see Page

Horizontal Fill A horizontal fill based upon some data value. E20

Vertical Fill A vertical fill based upon some data value. E20

 E5

Graphs

Name Description For Graphic Layer Properties see Page

Horizontal Graph A graph of horizontal bars based upon a data list. E29

Vertical Graph A graph of vertical bars based upon a data list. E29

Line Graph A line graph of points based upon a data list. E34

Rotary Pointer A rotary line based upon a value. (9 different styles). E24

Data Trend A line graph showing a Data Recorder channel. E38

Scales

Name Description For Graphic Layer Properties see Page

Horizontal Scale A horizontal “comb” used to label an axis. E23

Rotary Scale A rotary “comb” used to label the rotary pointer style. E27

Vertical Scale A vertical “comb” used to label an axis. E23

Others

Name Description For Graphic Layer Properties see Page

Bitmap A bitmap from the Bitmap Images list. E45

Macro from Library A predefined object from EDICT-97/ User’s Library. E19

 E6

Inserting animation items on a display page for a VX500T (color touch
screen)

Using your mouse on the Graphics layer, select Insert Disk.

Using your mouse, move your cursor to the area on the page where you want to insert the disk.
Hold your left mouse button down and drag the disk to the desired size. Now release the left
mouse button.

To change
color of disk,
click
Foreground.
Then click

desired color.

 E7

Move your cursor to the disk on the page. Now double click the disk to edit the disk’s properties.

Now go to Page 2 and repeat the same process. This time use a rectangle.

Download this database to your VX500T. Touching the disk and rectangle will toggle your display
between Page 1 and Page 2.

Select “Yes”

Use Wizard or type

in GotoPage(Page2)

Select Touch Tab

Double click

on Rectangle Select Touch Tab

Select “Yes”

Use Wizard or type

In GotoPage(Page1)

 E8

PowerPoint-style Page transitions(color units only).

Using the same database, Go to Page1 and select Page/Properties from the top of the page.
The following window appears.

Click OK and go to Page2.
Select Page/Properties and the following window appears.

Click OK and download to your VX500T and touch the disk and rectangle to observe the dynamic
page transitions. To observe how the other page transitions behave (Split Horizontal,etc.) go back
to the Page/Properties windows and make alternate selections.

 Choosing a Display Page color.

Using the same database; select Page/Properties of Page2.

Background color refers to the display page background color. Foreground color refers to the
default color that animation items will be unless otherwise specified. Both Background and
Foreground colors can be either solid or flashing colors.

Select “Scroll Left” for transition

Select “Scroll Right” for transition

Expand the Foreground and
Background windows
to choose a color from the

Color Selection window.

 E9

Inserting multiple animation items on a display page.

The following Icons appear at the top of the Graphics layer window.

This example shows how to align a rectangle and a disk inserted on the Graphics layer of a
Monochrome Graphic unit (GL350).

Aligning animation items

EDICT-97 provides facilities to align animation items with each other. To use this facility, first
select the reference item to which the other items are to be aligned. Hold down the Shift key and
then select the items that you wish to align. Note that the reference item will contain a small
square to identify it as such. Once you have the items selected, select the “Align” command from
the “Arrange” menu or select the Align Icon from the Toolbar at the top of the page. This will
display a dialog box, which allows you to select how you want the items aligned.
The “Align” command can also be used to align a single object within the display page
boundaries. Select the item, and then select the command. The item will be aligned relative to the
display page. If you want to apply this function to multiple items, select them all, and then convert
them into a group. Perform the alignment, and then ungroup the items to return them to their
original status.

Grid Options
(It is easier to
align multiple
items with this

turned on).

Snap to Grid Align
Animation

items

Snap to Grid on

 E10

Aligning the rectangle and disk in our example.

The disk is now aligned Vertical/Middle with the rectangle.

Reference item

Select
Align then
choose
from this

window.

 E11

Grouping animation items
Animation items can be combined into a group. A group is a collection of items, which is
manipulated as a single item. This can be useful when building library symbols, or when using the
same collection of items many times over. Groups can be nested, such that a group can contain
other groups up to any sensible level. To create a group, select the required items, and select the
“Group” command from the menu. To split a group into its component items, select the group
item, and then select the “Ungroup” command.

The following example shows how a collection of 3 rectangles, 8 circles, 2 disks and 1 line of
Graphics layer fixed text can be combined into a Group.

Select
collection then

Group

Right click
mouse to

duplicate

 E12

To save this Group as Macro

Save Group as Macro
Macro Library: Feeder
Macro Name: Conveyor

 E13

To Insert Macro from Library

Library Name

Macro Name

Click here
to Insert

Macro

 E14

Using Group Properties in Macros

EDICT-97 has 5 different Group Properties, which provide the designer great flexibility when
creating Macros. These Group Properties are Group Color, Group Value, Group Data, Group
String and Group Action. These powerful features can be used on both monochrome and color
graphic units.

Group Color: Each Macro can contain up to 8 different Group Colors. The color of individual or
multiple animation items in a Macro may be defined as a Group Color (1 to 8). When a Group is
saved as a Macro, the designer has the option to use an alias for this Group Color. For example
a Macro for a grain hopper may be created where the color of a rectangle may be assigned the
property GroupColor1. When this Macro is saved, the alias “Hopper Color” is substituted for the
property GroupColor1. When the Macro is selected from the library, the property “Hopper Color”
will appear in the properties window of this Macro.

Group Value: Each Macro can contain up to 8 different Group Value items. The value of
individual or multiple animation items in a Macro may be defined as a Group Value item (1 to 8).
Animation items designated as Group Value items must be “read only” variables. When a Group
is saved as a Macro the designer has the option to use an alias for this Group Value item. For
example a Macro for a grain hopper may be created where a Vertical Fill animation item is used
to represent the level of grain in the hopper. The value of the Vertical Fill animation item is
assigned the property GroupValue1. When this Macro is saved, the alias “Hopper Level” is
substituted for the property GroupValue1. When the Macro is selected from the library, the
property “Hopper Level” will appear in the properties window of this Macro.

 Group Data: Each Macro can contain up to 4 different Group Data items. The value of individual
or multiple animation items in a Macro may be defined as a Group Data item (1 to 4). Group Data
items are similar to Group Value items, but they can also be “data entry” variables. When a Group
is saved as a Macro, the designer has the option to use an alias for this Group Data item. For
example a Macro for a grain hopper may be created where a Insert Integer (Data entry) animation
item is used to enter the amount of grain that is going to be dispensed from the hopper. The
value of the Insert Integer is assigned the property GroupData1. When this Macro is saved, the
alias “Dispense” is substituted for the property GroupData1. When the Macro is selected from the
library, the property “Dispense” will appear in the properties window of this Macro.

Group String: Each Macro can contain up to 4 different Group String items. The value of
individual or multiple animation items in a Macro may be defined as a Group String item (1 to 4).
When a Group is saved as a Macro, the designer has the option to use an alias for this Group
String item. For example a Macro for a grain hopper may be created where a General Text
animation item is used to enter the hopper name. The value of the General Text item is assigned
the property GroupString1. When this Macro is saved, the alias “Hopper Name” is substituted for
the property GroupString1. When the Macro is selected from the library, the property “Hopper
Name” will appear in the properties window of this Macro.

Group Action: Each Macro can contain up to 4 different Group Action items. The value of
individual or multiple animation items in a Macro may be defined as a Group Action item (1to 4).
When a Group is saved as a Macro, the designer has the option to use an alias for this Group
Action item. For example, a Macro for a grain hopper may be created where a disk animation
item is used to start the dispensing process. The disk is designated “touch sensitive” and the “On
Pressed” property is assigned GroupAction1. When this Macro is saved, the alias “ Start Bit” is
substituted for the property GroupAction1. When the Macro is selected from the library, the
property “Start Bit” will appear in the properties window of this Macro.

 E15

Creating the Macro for the grain hopper

Insert rectangle and set the rectangle’s color as GroupColor1

Insert General Text and set the General Text’s value to GroupString1

Expression Wizard (Variable/System)

Note: The background color of the General Text and
Inserted Integer items are set to GroupColor1. The
background of the General Text and Inserted Integer
items will match the color of the rectangle.

Using the

 E16

Insert Vertical Fill and set the value property to GroupValue1.

Insert Integer Value and set the value property to GroupValue1

Insert Disk Animation item and set “On Pressed to GroupAction1”

 Using the

Expression Wizard (Variable/System)

 Using the
Expression Wizard (Variable/System)

 Using the
 Action Wizard

 (Variable/Neither of the above)

 E17

Insert Integer Value (data entry) and set value property to GroupData1

 Now Group all of the animation items and save as Macro

The following windows will appear.

 Using the
Expression Wizard (Variable/System)

Inserted Fixed Text

Create the Macro Library

 E18

On a display page, insert the Macro Hoppers from the HopperExample library

Double click on the inserted Hoppers Macro and the following window appears

Name the Macro

Define the Property Aliases
 for the Macro

Enter the names of the values
for this Macro
For example:
Dispense=HopLoad
HopperLevel=LevelSensor1
Hopper Color=Navy
Hopper Name=Wheat

Start Bit=HopStart

 E19

Inserting animation items from EDICT-97’s library

1)Select
Insert from
Macro

Library

3)Use scroll bar to

make selection

To edit caption properties use F2 key and
arrow keys. Type in desired caption

(make sure text is within “ ”)

Fill color will
change from
green to red
when the value
“level” falls
below 1000

level reads the
value of a PLC

register

See Page E41
for details on
color selection

options

2) Select Library

4) Insert on page

5) Double click on
item to edit

properties

 E20

Inserting a Horizontal or Vertical Fill

Insert Vertical Fill
onto a display

page

Double click on
inserted Vertical
Fill to edit

properties

temp is reading the
value of a Red Lion
Controls temperature

controller

The height of the Vertical Fill reflects the
temperature of the temperature controller.
When the temperature is under 500 F the color
of the fill is green. Between 500 F and 800 F the
fill is yellow. The color of the fill will be red at
temperatures of 800 F or higher.

 E21

The Horizontal Fill Animation Item

This animation item draws a horizontal bar, which varies in size based
upon the controlling value. You can define the foreground and
background colors to be used, plus an optional transformation for the
controlling value.

The table below lists the properties of this animation item…

Property Description

Value An integer expression defining the value to be displayed.

Transform An optional transform to be performed on the data. Before the data
value is displayed, it will be transformed using the information in this
property. This can be used, for example, to scale values from PLC to
engineering units. Note that the “Value” property is always evaluated
as a 16-bit number, and that transforms that manipulate bits will thus
behave as if they have been passed a 16-bit argument, even if the
underlying data is really a 32-bit value.

From An integer expression defining the minimum value to display. Data
values less than this value are clipped before being displayed. This
value can be numerically greater than the “To” property if you want the
graph to work “backwards”.

To An integer expression defining the maximum value to display. Data
values greater than this value are clipped before being displayed. This
value can be numerically less than the “From” property if you want the
graph to work “backwards”.

Color The Color to be used for the bar. See Color Selection Table for options
(Page E41)

Background The Color to be used for the section of the rectangle not taken up by
the bar. See Color Selection Table for options (Page E41)

 E22

The Vertical Fill Animation Item

This animation item draws a vertical bar, which varies in size based upon
the controlling value. You can define the foreground and background
Colors to be used, plus an optional transformation for the controlling
value.

The table below lists the properties of this animation item…

Property Description

Value An integer expression defining the value to be displayed.

Transform An optional transform to be performed on the data. Before the data
value is displayed, it will be transformed using the information in this
property. This can be used, for example, to scale values from PLC to
engineering units. Note that the “Value” property is always evaluated
as a 16-bit number, and that transforms that manipulate bits will thus
behave as if they have been passed a 16-bit argument, even if the
underlying data is really a 32-bit value.

From An integer expression defining the minimum value to display. Data
values less than this value are clipped before being displayed. This
value can be numerically greater than the “To” property if you want the
graph to work “backwards”.

To An integer expression defining the maximum value to display. Data
values greater than this value are clipped before being displayed. This
value can be numerically less than the “From” property if you want the
graph to work “backwards”.

Color The Color to be used for the bar. See Color Selection Table for options
(Page E41)

Background The Color to be used for the section of the rectangle not taken up by
the bar.

 E23

The Horizontal Scale Animation Item
This animation item displays a horizontal “comb” which can be used to label an axis or a
horizontal fill. The comb is made up of a number of major divisions; each of which can be further
subdivided into a number of minor divisions.
The table below lists the properties of this animation item…

Property Description

Major Divisions The number of major divisions on the scale. This represents the
number of gaps to be shown by the comb, as opposed to the number
of ticks. The number of ticks will be one more than the number of
gaps.

Minor Divisions The number of minor divisions per major division. If you enter a value
of 1 or None, the minor divisions will not be shown. Again, this value
represents the number of gaps and not the number of ticks, although
this time the number of ticks will be one less than the number of gaps.

Color The Color to be used for the comb. See Color Selection Table for
options (Page E41).

Orientation The orientation of the comb. This option controls which direction the
tick marks on the comb point. You may combine two combs with
opposite orientation with a fill effect to create an attractive meter.

The Vertical Scale Animation Item
This animation item displays a vertical “comb” which can be used to label an axis or a vertical fill.
The comb is made up of a number of major divisions; each of which can be further subdivided
into a number of minor divisions.
The table below lists the properties of this animation item…

Property Description

Major Divisions The number of major divisions on the scale. This represents the
number of gaps to be shown by the comb, as opposed to the number
of ticks. The number of ticks will be one more than the number of
gaps.

Minor Divisions The number of minor divisions per major division. If you enter a value
of 1 or None, the minor divisions will not be shown. Again, this value
represents the number of gaps and not the number of ticks, although
this time the number of ticks will be one less than the number of gaps.

Color The Color to be used for the comb. See Color Selection Table for
options (Page E41)

Orientation The orientation of the comb. This option controls which direction the
tick marks on the comb point. You may combine two combs with
opposite orientation with a fill effect to create an attractive meter.

 E24

Inserting a Rotary Pointer

EDICT-97 has 9 different styles of Rotary Pointers along with 9 different Rotary scales. The
Rotary scales have major and minor divisions settings that provide the designer great flexibility
for creating custom animation items.

 To Insert a Rotary Pointer on a display page

Insert Rotary Pointer and drag it (by holding the left mouse button pressed) to match the
size of the rectangle

First insert rectangle
and drag to the

desired size

Snap to Grid “on”

Mapped to PLC rate
register

 Range of Rotary

Pointer color

Background color
(should match
rectangle color)

Length: Full, Medium
or Short

Style: Options are
1
st
 Quadrant

2
nd
 Quadrant

3
rd
 Quadrant

4
th
 Quadrant

Top Half
Bottom Half
Left Half
Right Half
Standard 270

Double click to edit properties

 E25

Insert Rotary Scale and drag it (by holding the left mouse button pressed) to match the
size of the rectangle

Double click to edit properties

Set Major and Minor
divisions of Scale

Color of Scale

Style should match style
of Rotary Pointer

 E26

The Rotary Pointer Animation Item

This animation item draws a rotary pointer, which varies in position
based upon the controlling value. You can define the foreground and
background colors to be used, plus an optional transformation for the
controlling value.

The table below lists the properties of this animation item…

Property Description

Value An integer expression defining the value to be displayed.

Transform An optional transform to be performed on the data. Before the data
value is displayed, it will be transformed using the information in this
property. This can be used, for example, to scale values from PLC to
engineering units. Note that the “Value” property is always evaluated
as a 16-bit number, and that transforms that manipulate bits will thus
behave as if they have been passed a 16-bit argument, even if the
underlying data is really a 32-bit value.

From An integer expression defining the minimum value to display. Data
values less than this value are clipped before being displayed. This
value can be numerically greater than the “To” property if you want the
pointer to work “backwards”.

To An integer expression defining the maximum value to display. Data
values greater than this value are clipped before being displayed. This
value can be numerically less than the “From” property if you want the
pointer to work “backwards”.

Color The Color to be used for the rotary pointer. See Color Selection Table
for options (Page E41)

Background The Color to be used for pointer background area. This should be
selected to match the color of the area where the pointer is placed.

For Example if the pointer is placed on a blue rectangle the
background color of the pointer should be blue.

Length Three options: Full, Medium or Short

Style Nine options: 1
st
 Quadrant, 2

nd
 Quadrant, 3

rd
 Quadrant, 4

th
 Quadrant,

Top Half, Bottom Half, Left half, Right Half and Standard 270 degree

 E27

The Rotary Scale Animation Item
This animation item displays a rotary “comb” which can be used to label a rotary pointer. The
comb is made up of a number of major divisions; each of which can be further subdivided into a
number of minor divisions.

The table below lists the properties of this animation item…

Property Description

Major Divisions The number of major divisions on the scale. This represents the
number of gaps to be shown by the comb, as opposed to the number
of ticks. The number of ticks will be one more than the number of
gaps.

Minor Divisions The number of minor divisions per major division. If you enter a value
of 1 or None, the minor divisions will not be shown. Again, this value
represents the number of gaps and not the number of ticks, although
this time the number of ticks will be one less than the number of gaps.

Color The Color to be used for the comb. See Color Selection Table for
options (Page E41).

Style The style of the comb. There are nine different styles to match the nine
styles of rotary pointers.

 E28

Using Multiple Rotary pointers

Multiple rotary pointers may be placed on the same area. This allows designers to create custom
multiple variable rotary indicators. Setpoint vs. Actual value, relative position and rate
comparisons are some examples where this feature can be used.

This Example shows three line speeds displayed on one area.

 Insert a rectangle and then rotary scale on a display page.

Insert the three rotary pointers on the rectangle/rotary scale.

Inserted Integer values used
to label the rotary scale
(next major division has value

of 30, etc.).

rotary scale

speedline1 is reading
the rate value on a
Red Lion Controls
rate meter. This pointer
is red.

speedline2 is reading
the rate value on a
Red Lion Controls
 rate meter. This pointer
is green.

speedline3 is reading
the rate value on a
Red Lion Controls
Rate meter. This pointer
is blue.

 E29

Inserting Bar Graph (Horizontal or Vertical) animation items on a page

Insert a Vertical Bar Graph from the animation tool box and drag it to the desired size

Double click to edit properties

 E30

The Vertical Bar Graph Animation Item

This animation item draws a number of vertical bars, which vary in size
based upon values extracted from an array. You can define the
foreground and background colors to be used, plus an optional
transformation to be applied to each data value.

The table below lists the properties of this animation item…

Property Description

Value An indexable expression defining the values to be displayed. Values
can be either CommsBlock values eg. A[0], A[1], A[2], etc. or arrays
from the data files in Named Data e.g. pressure[0], pressure[1],
pressure[2], etc.

Count The number of data values to be displayed.

Transform An optional transform to be performed on the data. Before each data
value is displayed, it will be transformed using the information in this
property. This can be used, for example, to scale values from PLC to
engineering units. Note that the “Value” property is always evaluated
as a 16-bit number, and that transforms that manipulate bits will thus
behave as if they have been passed a 16-bit argument, even if the
underlying data is really a 32-bit value.

From An integer expression defining the minimum value to display. Data
values less than this value are clipped before being displayed. This
value can be numerically greater than the “To” property if you want the
graph to work “backwards”.

To An integer expression defining the maximum value to display. Data
values greater than this value are clipped before being displayed. This
value can be numerically less than the “From” property if you want the
graph to work “backwards”.

Color The Color to be used for the bars. See Color Selection Table for
options (Page E41).

Background The Color to be used for the section of the rectangle not taken up by
the bars. See Color Selection Table for options (Page E41).

 E31

Using values from CommsBlocks

Double click to edit properties
Value set to A[0] designates that A[0] is the starting
point of the CommsBlock array. Count of 3 indicates that
there are 3 values in the array. They are A[0], A[1] and
A[2]. Each of the Vertical bars will have values ranging
from 0 to 100.

In this example NamedData was used to
give A[0], A[1] and A[2] the variable
names yeast, hops and barley.

A[0], A[1] and A[2]
are mapped to Data
Registers in a
GE Fanuc Series 90
PLC.

 E32

Using values from Data Files in Named Data

This example uses the indirect addressing feature of EDICT-97 to log data variables. In this
example, the operator interface is reading the value of a Red Lion Controls IAMS smart signal
conditioner.

Double click to edit properties

Value set to pressure[0] designates that
pressure[0] is the starting point for the Data
Files array. Count of 4 indicates that there
are 4 values in this array. They are
pressure[0], pressure[1], pressure[2] and
pressure[3]. The values of each bar will
range from 0 to 1000. The color of each bar
will be red.

 E33

The Horizontal Bar Graph Animation Item

This animation item draws a number of horizontal bars, which vary in
size based upon values extracted from an array. You can define the
foreground and background colors to be used, plus an optional
transformation to be applied to each data value.

The table below lists the properties of this animation item…

Property Description

Value An indexable expression defining the values to be displayed. Values
can be either CommsBlock values, eg. A[0], A[1], A[2], etc., or arrays
from the data files

Count The number of data values to be displayed.

Transform An optional transform to be performed on the data. Before each data
value is displayed, it will be transformed using the information in this
property. This can be used, for example, to scale values from PLC to
engineering units. Note that the “Value” property is always evaluated
as a 16-bit number, and that transforms that manipulate bits will thus
behave as if they have been passed a 16-bit argument, even if the
underlying data is really a 32-bit value.

From An integer expression defining the minimum value to display. Data
values less than this value are clipped before being displayed. This
value can be numerically greater than the “To” property if you want the
graph to work “backwards”.

To An integer expression defining the maximum value to display. Data
values greater than this value are clipped before being displayed. This
value can be numerically less than the “From” property if you want the
graph to work “backwards”.

Color The Color to be used for the bars. See Color Selection Table for
options (Page E41).

Background The Color to be used for the section of the rectangle not taken up by
the bars. See Color Selection Table for options (Page E41).

 E34

Inserting Line Graph Animation items on a display page

Insert a Line Graph from the animation tool box and drag to desired size

Double click to edit properties

 E35

The Line Graph Animation Item

This animation item draws a line graph based upon data values
extracted from an array. You can define the foreground and background
colors to be used, plus an optional transformation to be applied to each
data value.

The table below lists the properties of this animation item…

Property Description

Value An indexable expression defining the values to be displayed. Values
can be either CommsBlock values eg. A[0], A[1], A[2], etc. or arrays
from the data files in Named Data e.g. pressure[0], pressure[1],
pressure[2], etc.

Count The number of data values to be displayed.

Transform An optional transform to be performed on the data. Before each data
value is displayed, it will be transformed using the information in this
property. This can be used, for example, to scale values from PLC to
engineering units. Note that the “Value” property is always evaluated
as a 16-bit number, and that transforms that manipulate bits will thus
behave as if they have been passed a 16-bit argument, even if the
underlying data is really a 32-bit value.

From An integer expression defining the minimum value to display. Data
values less than this value are clipped before being displayed. This
value can be numerically greater than the “To” property if you want the
graph to work “backwards”.

To An integer expression defining the maximum value to display. Data
values greater than this value are clipped before being displayed. This
value can be numerically less than the “From” property if you want the
graph to work “backwards”.

Color The Color to be used for the line and data point markers. See Color
Selection Table for options (Page E41).

Background The Color to be used for the section of the rectangle not taken up by
the graph. Either enter an expression, which evaluates to one of the
Color values, or select a Color from the list displayed by the Alt+Down
key combination.

Mark Points Whether or not to mark the data points with small rectangles.

 E36

Using values from CommsBlocks

Double click to edit properties

Value set to B[0] designates
that B[0] is the starting point
of the CommsBlock array.
Count of 10 indicates that
there are 10 values in the
array. They are B[0], B[1]…
B[9]. Each of the points on the
line will have values ranging
from 0 to 50 on the Y axis.
The color of the line and
points on the line is blue.
The background color is
white.

Internal CommsBlock reference

 E37

Using values from Data Files in Named Data

A chemical manufacturer
wants to plot hourly
production. Triggered by the
Schedule table the operator
interface reads a PLC counter
register every hour for hourly
production. The operator
interface stores these values
in the Named Data array
Drums. The count is 24 for 24
hours (one reading/hour).
Hourly production ranges
from 0 to 5000 drums/hour.

 E38

Using the Data Logger

The Data Logger can be used for the source of displayed trends. Trends can be displayed on a
preformatted display page (by choosing Page Properties/Category/TrendViewer) or by using
the Insert Trend animation item from the Graphics Layer Animation ToolBox.

Using the Trend Viewer on a Display Page
(The following Channel in the Data Logger was used as the source for the Trend)

Using the preformatted trend viewer display page (Select Page/Properties)

The source for TempZone 1 (Channel 1) is the value Temp1.
Temp1 reads the process value from a Red Lion Controls PID
temperature controller. A frequency of 60 indicates that the
operator interface reads this process value once a minute (60
seconds). This channel will log 120 readings (samples) and wrap
around when the log is full (newest readings will replace oldest
readings when log is full). The logged value will range from 32 to
300 F).

Highlight TempZone 1 and

choose Edit properties.

Select Category
Trend Viewer and
select Channel 1 from
options. Set Points to
120. The Trend will
display all 120 values
in TempZone1.

 E39

Displaying a Trend on the Graphics Layer of a Display Page

Insert the View Trend animation item from the graphics layer animation toolbox and drag
to desired size

Using the same example to display multiple trends on one area (multiple pens)
Note: The number of trends that may be displayed is limited only by the number of colors
(16 solid colors and 240 flashing combinations). Multiple trends must have the same time
base (frequency).

From Channel 2 in the Data Logger

Double click to edit properties

Channel 1 is TempZone1
from the Data Logger.
All 120 logged values will
be displayed. The
background color is white
and the trend line color is
blue. The Trace is not
hidden. A condition or
expression could be used
to hide a Trace. For
example, if Temp1>100
was entered into the Hide
Trace window, the Trend
Line would not be visible
when Temp1 exceeded
100F. Transparent refers
to multiple trends
displayed in the same
area.

 E40

Insert the second trend on top of the first trend

A second channel is configured to
log the set point from the same Red
Lion Controls PID temperature
controller. The general properties
match channel 1(TempZone1).

Channel 2 (value
=Zone1SP) Trend is
inserted on top of
Channel 1
(value=Temp1). The
line color of this trend is
red. The background
matches the
background of the
Channel 1 trend. By
making this trend
transparent, the viewer
can see this trend along
with the trend it covers.
A variable called
“HideSP1” was created
and used to hide the
trace when activated.

Soft key1 pressed
toggles HideSP1.
(Hiding/UnHiding the
Zone1SP Trend)

Double click to edit properties

 E41

The Color Selection Table

Graphical objects within EDICT-97 have a number of properties, which define their appearance.
Some of these properties will define color. For example, a rectangle will have a single property,
which defines the color in which the figure will be drawn. Similarly, a text item will have two
properties, which define the item’s foreground and background colors. In common with other
EDICT-97 properties, color properties can be left undefined by the user. In this case, each
property will assume a default value, which is appropriate to the property’s application.

EDICT-97 allows default background and foreground colors to be defined either at the page or
the database level. When a color property for an animation item is left in its default state, it will
reflect either the default foreground or background color as appropriate. The majority of
properties reflect the ambient foreground color, with only those properties, which specifically refer
to the background of an item chosen to reflect the ambient background color. Example of the
latter properties would be background properties of horizontal and vertical fill, or the background
property of a text field.

If a color is not left at its default value, the user has several options as to how it can be defined.
The simplest way is to select a single color. This can be done via the two color toolboxes, via the
context menu for the animation item, or via the first page of the color selection dialog box. A
further option allows the selection of a flashing color, whereby the user selects two colors, which
will be displayed alternately at a rate defined elsewhere in the database. EDICT-97 offers all
flashing combinations of its basic sixteen colors, resulting in a combined total 256 solid and
flashing colors.

It is also possible to indicate that a color property should assume the value of either the ambient
foreground or background color. The default setting for each property is always one of the
ambient colors. Setting a property to its default produces no distinct result. Setting a property to
the other ambient color is useful, however. One may, for example wish to define a text field
whose background is equal to the ambient foreground color and whose foreground color is equal
to the ambient background. Such a field will always appear “in reverse”; even if the page’s
foreground or background color is changed.

The inserted rectangle has
one color property that can be
set. Therefore the foreground
window “becomes active” and
the color of this item can be
changed directly by using
your mouse to choose a color
from this toolbox.

Active toolbox

Selecting the color of an animation item from the two color toolboxes

 E42

Insert an animation item that has both foreground and background properties

You can also edit the color of an animation item by double clicking it to edit the item’s properties

Note: To select the color of the Status Text animation item, the Format Tab must be selected.

The Status Text item
inserted on the display
page has both foreground
and background colors
which can be selected.
Notice that the background
toolbox now becomes
active. Both background
and foreground colors can
be selected by moving your
mouse and clicking the
desired color.

Both toolboxes are now active

Rectangle

Status Text

 E43

Another way of defining a color is to use one of the four color animation primitives. These allow a
color property to be defined in an analogous way to the various text animation items. For
example, the status color primitive allows one of two colors to be chosen based upon a control
value, while the quad color primitive extends this to four colors. Further primitives exist to allow a
color to be chosen from a list according to a numeric index, or on the basis of a number of
conditions. These operate in a manner analogous to the message and text fields, respectively.

Status Color

Value An integer expression used to select the color to be displayed. Note that only
the truth or otherwise of the expression is considered, with any non-zero value
being considered true.

On Color The color to be displayed when “Value” is true.

Off Color The color to be displayed when “Value” is false.

Status Color example

Quad Color

Value An integer expression used to select the color to be displayed.

Color 1 The color to display when the bottom bits of “Value” are 00.

Color 2 The color to display when the bottom bits of “Value” are 01.

Color 3 The color to display when the bottom bits of “Value” are 10.

Color 4 The color to display when the bottom bits of “Value” are 11.

Quad Color example

The color of the animation item will be
FlashingWhiteRed when the value of temp1 is
greater than 100. The color of the animation
item will be green when the value of temp1 is
less than or equal to 100.

The color of the animation item will be
Green when the bottom bits of valve are 00,
Yellow when the bottom bits of valve are 01,
Blue when the bottom bits of valve are 10
and Red when the bottom bits of valve are
11.

 E44

Color Table

Value An integer expression defining the color to be displayed.

Base The color to show when “Value” evaluates to zero. Leaving this property at
“Default” will result in an invalid color being selected in such circumstances, with
the valid colors starting when “Value” is one. This field is used to introduce an
offset into the color selection process, without having to make “Value” into a non-
writable value by including the offset within that expression. It is rarely used with
a local color table.

Table Expanding the field allows you to create a color table local to this animation field.

Color Table example

Decode Color

Table The decode color of this animation item. Expand the field and then enter pairs
of controlling expressions and colors. EDICT-97 will display the first color for
which the controller expression is true, or left empty. The order of the entries in
the table is obviously very important.

Decode Color example

Group Color (See Using Group Properties in Macros Page E14)

When the value
of labelcolor is 1,
the color of the
animation item is
white. When the
value of
labelcolor is 2,
the color of the
animation item is
black, etc.

The color of the animation item will be
Green when the variable speed is less
than 30. The color of the animation item
will be Yellow when the value of speed is
greater than 29 and less than 50. The
color of the animation item will be Red
when the value of speed is greater than
49.

 E45

Bitmap Animation Item

This animation item displays a bitmap from the Bitmap Images list. If the
bitmap has multiple sub-images, a value can be used to select from
those images. This technique can be used to create animation items,
which display one of a number of bitmaps based upon the status of the
plant.

The table below lists the properties of this animation item…

Property (General) Description

Value The sub-image to be displayed. A value of zero displays the first
sub-image, and a value of one displays the second, and so on. If the
bitmap does not have sub-images, this value has no effect on what is
displayed. If the value exceeds that permitted by the number of
sub-images, it is reduced modulo that number.

Bitmap The bitmap to be displayed. The name refers to an entry in the Bitmap
Images list. The bitmap must be of a type suitable for the currently
selected terminal and display format.

Property (Format) Description

Color Refers to the foreground color of an imported monochrome bitmap
used with color graphical units. See Color Selection Table for options
(Page E41)

Background Refers to the background color of an imported monochrome bitmap
used with color graphical units. See Color Selection Table for options
(Page E41)

Property(Touch)
(Touch Units Only)

Description

Touch Sensitive Defines whether this bitmap animation item responds to a touch
stimulus. Options are Yes or No.

Enable Can be used when the Touch Sensitive property is Yes. If an
expression is entered for this property, it must evaluate to a non-zero
value for this Integer to be Touch Sensitive.

Access Level Used with the System Security feature to control user access. Access
level can be set from “Any” up through “Level 9”.

On Pressed The Action that results when a touch occurs on a Touch Sensitive
area. Example: motors.0:=!motors.0 (when the bitmap item is touched,
the least significant bit of the variable motors is toggled)

On Auto-Repeat The Action that results when a touch is maintained on a Touch
Sensitive area. Example: motors.0:=!motors.0 (when the touch to the
bitmap item is maintained, the least significant bit of the variable
motors is toggles).

On Released The Action that results when a touch occurs and is removed on a
Touch Sensitive area. Example: motors.0:=!motors.0 (when the touch
to the bitmap item is released, the least significant bit of the variable
motors is toggled).

 E46

To load custom BITMAPS for use in displays, first select “Bitmap Images” from the main screen.

The first bitmap can be loaded by selecting Load. It can be renamed from the default name
“Bitmap 1”. Subsequent bitmaps can be loaded by first selecting “Insert”, then named, and
loaded. “GoTo” permits the selection of previously loaded bitmaps; “Update” reloads the bitmap
from the disk, making it easier to reload when the bitmap was modified.

The above is a representation of a rotary switch with 2 states.

 E47

By selecting “Bitmap” and “Properties”, the bitmap is divided in half. The terminal’s internal
software recognizes the division and will select the left half when the “State” of the animation item
is 0, and the right half when the “State” is 1. Since this image is 32 pixels wide, 16 pixels is
selected for the display of 2 states. In order to use this property of the software, bitmap sections
must be multiples of 8 from 16 through 64, and the entire bitmap must be a multiple of a section.

Now the Bitmap is loaded and sectioned. Returning to Display Pages, it can be selected for the
display.

Note: Designers can use this bitmap sectioning technique to turn imported 16 color
bitmaps “on” and “off”. For example, a 128 x 64 pixel color bitmap can be imported where
the object to be displayed is located in the first 64 pixels and next 64 pixels are left blank.

 E48

Select Insert Bitmap from animation toolbox (this example shows the Graphics layer for a VX
color panel) and place on display page

Once OK is selected; the final display is as follows. The size of the item is proportional to the size
of the bitmap. To change the size, the original bitmap must be enlarged or reduced.

Double click to bitmap animation item to edit properties

The value of the variable
count will control the state
of the inserted bitmap.
The loaded Bitmap is
Bitmap 1.

 E49

Integer Animation Item (Graphics Mode)

This animation item is used to display an integer value on the screen.
You may specify how many decimal places are to be shown, and what
number base is to be used when formatting the data. The table below
lists the properties of this animation item…

Property(General) Description

Value An integer expression giving the value to be displayed.

Transform An optional transform to be performed on the data. Before the data
value is displayed, it will be transformed using the information in this
property. This can be used, for example, to scale values from PLC to
engineering units. Note that the “Value” property is always evaluated
as a 32-bit number, and that transforms that manipulate bits will thus
behave as if they have been passed a 32-bit argument, even if the
underlying data is really a 16-bit value.

Template A picture of how the number should be formatted. You should use this
field to select the number of decimal places required and the number
base to be used. You may either select a value from the list, or enter a
custom setting of your own. Follow the link below for more details on
using Templates.

Mode Read-only or Data-Entry

Property(Format) Description

Font The font to be used to display the text. You can either select one of the
six resident fonts present in the terminal’s firmware, or select a font
defined in the Character Fonts section.

Justify How the message is to be formatted. This setting controls how EDICT-
97 pads-out graphical text, which is shorter than the width of the
animation item.

Color The Color to be used for the text. See Color Selection Table for
options (Page E41).

Background The Color to be used for the background. See Color Selection Table
for options (Page E41).

Property(Touch)
(Touch Units Only)

Description

Touch Sensitive Defines whether this Inserted Integer field responds to a touch
stimulus. Options are Yes or No.

Enable Can be used when the Touch Sensitive property is Yes. If an
expression is entered for this property, it must evaluate to a non-zero
value for this Integer to be Touch Sensitive.

Access Level Used with the System Security feature to control user access.

Access level can be set from “Any” up through “Level 9”.

On Pressed The Action that results when a touch occurs on a Touch Sensitive
area. Example: count:=914 (When the Integer value field is pressed
the value “count” will be loaded with the value 914).

 E50

On Auto-Repeat The Action that results when a touch is maintained on a Touch
Sensitive area. Example: count++ (the register “count” will
continuously increment by 1 as long as the touch is maintained).

On Released The Action that results when a touch occurs and is removed on a
Touch Sensitive area. Example: count:=914 (When the Integer value
field is pressed, the value “count” will be loaded with the value 914).

Property(DataEntry)
(Touch Units Only)

Description

Minimum The minimum value permitted. If an expression is entered, the value
entered by the operator must not be less that the value of the
expression. If an out of range value is entered, the “Out of Range
Value Entered” event will be generated.

Maximum The maximum value permitted. If an expression is entered, the value
entered by the operator must not be more than the value of the
expression. If an out of range value is entered, the “Out of Range
Value Entered” event will be generated.

Step The step used for the Raise and Lower keys. This field is used to
control how much the value will change by when the Raise and Lower
keys are used for data entry. Leaving the field at its default value will
produce a step of one, while entering a zero value will effectively
disable these keys.

Default The default value for the field. If an expression is entered, the field will
be loaded with the value of that expression before data entry is
commenced. If the property is left at its default value, the field will
contain whatever was previously held in the expression used to define
its “Value” property.

Enable Whether or not data entry is permitted. If an expression is entered for
this property, it must evaluate to a non-zero value if data entry is to be
allowed. It the expression is zero, the field will operate as if the
“Mode” setting had been set to “read-only”.

Access Level Used with the System Security feature to control user access.

Access level can be set from “Any” up through “Level 9”.

Touch Entry Touch units feature a “popup” data-entry window when data entry
fields are touched. The four options for these windows are Raise-
Lower and Keypad, Raise-Lower Only, Keypad Only and Just Select
field.

Real Number Animation Item (Graphics Mode)

This animation item is used to display a floating point value on the
screen or on a printed report. You may specify how many decimal places
are to be shown by modifying the template. Note that only fixed-point
formatting of floating point values is supported. The table below lists the
properties of this animation item…

 E51

Property (General) Description

Value A floating point expression giving the value to be displayed. If you
want to display an integer value, you should consider using the Integer
animation item instead, as it is somewhat quicker and supports a
greater number of formatting options.

Template A picture of how the number should be formatted. You should use this
field to select the number of decimal places required. You may either
select a value from the list, or enter a custom setting of your own.
Follow the link below for more details on using Templates.

Property (Format) Description

Font The font to be used to display the text. You can either select one of the
six resident fonts present in the terminal’s firmware, or select a font
defined in the Character Fonts section.

Justify How the message is to be formatted. This setting controls how EDICT-
97 pads-out graphical text, which is shorter than the width of the
animation item.

Color The Color to be used for the text. See Color Selection Table for
options (Page E41).

Background The Color to be used for the background. See Color Selection Table
for options (Page E41).

Property(Touch)
(Touch Units Only)

Description

Touch Sensitive Defines whether this Inserted Integer field responds to a touch
stimulus. Options are Yes or No.

Enable Can be used when the Touch Sensitive property is Yes. If an
expression is entered for this property, it must evaluate to a non-zero
value for this Integer to be Touch Sensitive.

Access Level Used with the System Security feature to control user access.

Access level can be set from “Any” up through “Level 9”.

On Pressed The Action that results when a touch occurs on a Touch Sensitive
area. Example: count:=2.5 (When the Real value field is pressed, the
value “count” will be loaded with the value 2.5).Example: count:=2.5
(The register “count” contains a value of 2.5 when the Value is
touched).

On Auto-Repeat The Action that results when a touch is maintained on a Touch
Sensitive area. Example: count:=count +2.5 (the register “count” will
continuously increment by 2.5 as long as the touch is maintained).

On Released The Action that results when a touch occurs and is removed on a
Touch Sensitive area. Example: count:=2.5 (The register “count”
contains a value of 2.5 when the Real Value area is touched &
released).

 E52

Fixed Text Animation Item (Graphics Mode)
This animation item displays a fixed string.

The table below lists the properties of this animation item…

Property (General) Description

Text A string specifying the text to be displayed.

Length The text string length can be specified. For Example, entering a 5 in
this field would limit the text string length to 5 characters. Leaving the
setting in this field at “Automatic” allows for string lengths limited only
by the display page layout.

Property (Format) Description

Font The font to be used to display the text. You can either select one of the
six resident fonts present in the terminal’s firmware, or select a font
defined in the Character Fonts section.

Justify How the message is to be formatted. This setting controls how EDICT-
97 truncates graphical text, which is shorter than the width of the
animation item.

Color The Color to be used for the text. See Color Selection Table for
options (Page E41).

Background The Color to be used for the background. See Color Selection Table
for options (Page E41).

Property(Touch)
(Touch Units Only)

Description

Touch Sensitive Defines whether this Fixed field responds to a touch stimulus. Options
are Yes or No.

Enable Can be used when the Touch Sensitive property is Yes. If an
expression is entered for this property, it must evaluate to a non-zero
value for this Integer to be Touch Sensitive.

Access Level Used with the System Security feature to control user access.

Access level can be set from “Any” up through “Level 9”.

On Pressed The Action that results when a touch occurs on a Touch Sensitive
area. Example: count:=914 (When the Integer value field is pressed,
the value “count” will be loaded with the value 914).

On Auto-Repeat The Action that results when a touch is maintained on a Touch
Sensitive area. Example: count++ (the register “count” will
continuously increment by 1 as long as the touch is maintained).

On Released The Action that results when a touch occurs and is removed on a
Touch Sensitive area. . Example: count:=914 (When the Integer value
field is pressed, the value “count” will be loaded with the value 914).

 E53

Status Text Animation Item (Graphics Mode)

The animation item is used to display one of a pair of text strings, based
upon the logical value of an expression. For example, it can be used to
display the status of a single bit, or to display a string based upon
whether a numeric value is over a certain limit. The table below lists the
properties of this animation item…

Property (General) Description

Value An integer expression used to select the text to be displayed. Note that
only the truth or otherwise of the expression is considered, with any
non-zero value being considered true.

ON Text The text to display when “Value” is true.

OFF Text The text to display when “Value” is false.

Length The text string length can be specified. For Example, entering a 5 in
this field would limit the text string length to 5 characters. Leaving the
setting in this field at “Automatic” allows for string lengths limited only
by the display page layout.

Mode Data-Entry or Read-Only. On Touch units the Raise/Lower data entry
window will appear when the Status Text area is touched. On non-
touch Graphic units, the Raise/Lower keys will toggle the Status Text.
The Integer “Value” will also change when the Status Text changes.

Property (Format) Description

Font The font to be used to display the text. You can either select one of the
six resident fonts present in the terminal’s firmware, or select a font
defined in the Character Fonts section.

Justify How the message is to be formatted. This setting controls how EDICT-
97 pads-out graphical text, which is shorter than the width of the
animation item.

Color The Color to be used for the text. See Color Selection Table for
options (Page E41).

Background The Color to be used for the background. See Color Selection Table
for options (Page E41).

Property(Touch)
(Touch Units Only)

Description

Touch Sensitive Defines whether this Status Text field responds to a touch stimulus.
Options are Yes or No.

Enable Can be used when the Touch Sensitive property is Yes. If an
expression is entered for this property, it must evaluate to a non-zero
value for this Integer to be Touch Sensitive.

Access Level Used with the System Security feature to control user access. Access
level can be set from “Any” up through “Level 9”.

On Pressed The Action that results when a touch occurs on a Touch Sensitive
area. Example: lang:=!lang,SetLanguage(lang) (the language that the
database is displayed in will toggle each time that the Status Text field
is touched.)

 E54

On Auto-Repeat The Action that results when a touch is maintained on a Touch
Sensitive area.

On Released The Action that results when a touch occurs and is removed on a
Touch Sensitive area. Example: count:=2.5 (The register “count”
contains a value of 2.5 when the Status Text area is touched &
released).

Property(DataEntry)
(Touch Units Only)

Description

Default The default value for the field. If an expression is entered, the field will
be loaded with the value of that expression before data entry is
commenced. If the property is left at its default value, the field will
contain whatever was previously held in the expression used to define
its “Value” property.

Enable Whether or not data entry is permitted. If an expression is entered for
this property, it must evaluate to a non-zero value if data entry is to be
allowed. It the expression is zero, the field will operate as if the
“Mode” setting had been set to “read-only”.

Access Level Used with the System Security feature to control user access. Access
level can be set from “Any” up through “Level 9”.

Quad Text Animation Item (Graphics Mode)

The animation item is used to display one of four text strings, based
upon the value of the bottom two bits of an expression. It is often used to
display the status of a three way valve, based upon the limit switches at
either end of its travel. The table below lists the properties of this
animation item…

Property (General) Description

Value An integer expression used to select the text to be displayed.

Text 0 The text to display when the bottom bits of “Value” are 00.

Text 1 The text to display when the bottom bits of “Value” are 01.

Text 2 The text to display when the bottom bits of “Value” are 10.

Text 3 The text to display when the bottom bits of “Value” are 11.

Length The text string length can be specified. For Example, entering a 5 in
this field would limit the text string length to 5 characters. Leaving the
setting in this field at “Automatic” allows for string lengths limited only
by the display page layout.

Mode Data-Entry or Read-Only. On Touch units the Raise/Lower data entry
window will appear when the Quad Text area is touched. On non-
touch Graphic units, the Raise/Lower keys will alter the Quad Text.
The Integer “Value” will also change when the Quad Text changes.

 E55

Property (Format) Description

Font The font to be used to display the text. You can either select one of the
six resident fonts present in the terminal’s firmware, or select a font
defined in the Character Fonts section.

Justify How the message is to be formatted. This setting controls how EDICT-
97 pads-out graphical text, which is shorter than the width of the
animation item.

Color The Color to be used for the text. See Color Selection Table for
options (Page E41).

Background The Color to be used for the background. See Color Selection Table
for options (Page E41).

Property(Touch)
(Touch Units Only)

Description

Touch Sensitive Defines whether this Quad Text field responds to a touch stimulus.
Options are Yes or No.

Enable Can be used when the Touch Sensitive property is Yes. If an
expression is entered for this property, it must evaluate to a non-zero
value for this Integer to be Touch Sensitive.

Access Level Used with the System Security feature to control user access.

Access level can be set from “Any” up through “Level 9”.

On Pressed The Action that results when a touch occurs on a Touch Sensitive
area.

On Auto-Repeat The Action that results when a touch is maintained on a Touch
Sensitive area.

On Released The Action that results when a touch occurs and is removed on a
Touch Sensitive area

Property(DataEntry)
(Touch Units Only)

Description

Minimum The minimum value permitted. If an expression is entered, the value
entered by the operator must not be less that the value of the
expression. If an out of range value is entered, the “Out of Range
Value Entered” event will be generated.

Maximum The maximum value permitted. If an expression is entered, the value
entered by the operator must not be more that the value of the
expression. If an out of range value is entered, the “Out of Range
Value Entered” event will be generated.

Step The step used for the Raise and Lower keys. This field is used to
control how much the value will change by when the Raise and Lower
keys are used for data entry. Leaving the field at its default value will
produce a step of one, while entering a zero value will effectively
disable these keys.

 E56

Default The default value for the field. If an expression is entered, the field will
be loaded with the value of that expression before data entry is
commenced. If the property is left at its default value, the field will
contain whatever was previously held in the expression used to define
its “Value” property.

Access Level Used with the System Security feature to control user access. Access
level can be set from “Any” up through “Level 9”.

Message Text Animation Item (Graphics Mode)

This animation item is used to display a text string chosen from the
message table, with the selection being based upon the value of an
expression. You can select from either the global message table, or a
table local to a given animation item. The table below lists the properties
of this animation item…

Property (General) Description

Value An integer expression defining the message to be displayed.

Base The message to show when “Value” evaluates to zero. Leaving this
property at “Default” will result in an invalid message being selected in
such circumstances, with the valid messages starting when “Value” is
one. This field is used to introduce an offset into the message
selection process, without having to make “Value” into a non-writable
value by including the offset within that expression. It is rarely used
with a local message table.

Table The message table to use. If you leave this property set to “Global”,
the message will be selected from the global message table.
Expanding the field allows you to create a message table local to this
animation field. This can make life easier sometimes, but can be
wasteful of memory and harder to maintain if the same table is to be
repeated many times.

Length The length of the field on the display page. You should enter a value
from 1 to the maximum number of characters permitted by the display
page format and the cursor position. Messages longer than this value
will be clipped according to the “Justify” setting.

Mode Data-Entry or Read-Only. On Touch units, the Raise/Lower data entry
window will appear when the Message Text area is touched. On non-
touch Graphic units, the Raise/Lower keys will alter the Quad Text.
The Integer “Value” will also change when the Message Text changes.

Property (Format) Description

Font The font to be used to display the text. You can either select one of the
six resident fonts present in the terminal’s firmware, or select a font
defined in the Character Fonts section.

Justify How the message is to be formatted. This setting controls how EDICT-
97 pads-out graphical text, which is shorter than the width of the
animation item.

 E57

Color The Color to be used for the text. See Color Selection Table for
options (Page E41).

Background The Color to be used for the background See Color Selection Table for
options (Page E41).

Property(Touch)
(Touch Units Only)

Description

Touch Sensitive Defines whether this Message Text field responds to a touch stimulus.
Options are Yes or No.

Enable Can be used when the Touch Sensitive property is Yes. If an
expression is entered for this property, it must evaluate to a non-zero
value for this Integer to be Touch Sensitive.

Access Level Used with the System Security feature to control user access.

Access level can be set from “Any” up through “Level 9”.

On Pressed The Action that results when a touch occurs on a Touch Sensitive
area. Example: count:=2.5 (The register “count” contains a value of
2.5 when the Message Text area is touched).

On Auto-Repeat The Action that results when a touch is maintained on a Touch
Sensitive area. Example: count:=count +2.5 (the register “count” will
continuously increment by 2.5 as long as the touch is maintained).

On Released The Action that results when a touch occurs and is removed on a
Touch Sensitive area. Example: count:=2.5 (The register “count”
contains a value of 2.5 when the Message Text area is touched &
released).

Property(DataEntry)
(Touch Units Only)

Description

Minimum The minimum value permitted. If an expression is entered, the value
entered by the operator must not be less that the value of the
expression. If an out of range value is entered, the “Out of Range
Value Entered” event will be generated.

Maximum The maximum value permitted. If an expression is entered, the value
entered by the operator must not be more that the value of the
expression. If an out of range value is entered, the “Out of Range
Value Entered” event will be generated.

Step The step used for the Raise and Lower keys. This field is used to
control how much the value will change by when the Raise and Lower
keys are used for data entry. Leaving the field at its default value will
produce a step of one, while entering a zero value will effectively
disable these keys.

Default The default value for the field. If an expression is entered, the field will
be loaded with the value of that expression before data entry is
commenced. If the property is left at its default value, the field will
contain whatever was previously held in the expression used to define
its “Value” property.

Access Level Used with the System Security feature to control user access. Access
level can be set from “Any” up through “Level 9”.

 E58

Decode Text Animation Item (Graphics Mode)

This animation item is used to select a string from a table, based upon
the true or false value of an expression associated with each string.
EDICT-97 scans the table, and selects the first string for which the
controlling expression is true. This allows complex decoding functions to
be performed, including such things as bit-level prioritisation of
messages, or multiple decodes of numeric values. The table below lists
the properties of this animation item…

Property (General) Description

Table The decode table of this field. You should expand the field by pressing
the F2 key, and then enter pairs of controlling expressions and strings.
EDICT-97 will display the first string for which the controller expression
is true, or left empty. The order of the entries in the table is obviously
very important.

Property (Format) Description

Length The length of the field on the display page. You should enter a value
from 1 to the maximum number of characters permitted by the display
page format and the cursor position. Strings longer than this value will
be clipped according to the “Justify” setting.

Font The font to be used to display the text. You can either select one of the
six resident fonts present in the terminal’s firmware, or select a font
defined in the Character Fonts section.

Justify How the message is to be formatted. This setting controls how EDICT-
97 pads-out graphical text, which is shorter than the width of the
animation item.

Color The Color to be used for the text. See Color Selection Table for
options (Page E41).

Background The Color to be used for the background. See Color Selection Table
for options (Page E41).

Property(Touch)
(Touch Units Only)

Description

Touch Sensitive Defines whether this Decode Text field responds to a touch stimulus.
Options are Yes or No.

Enable Can be used when the Touch Sensitive property is Yes. If an
expression is entered for this property, it must evaluate to a non-zero
value for this Integer to be Touch Sensitive.

Access Level Used with the System Security feature to control user access.

Access level can be set from “Any” up through “Level 9”.

On Pressed The Action that results when a touch occurs on a Touch Sensitive
area. Example: count:=2.5 (The register “count” contains a value of
2.5 when the Decode Text area is touched).

 E59

On Auto-Repeat The Action that results when a touch is maintained on a Touch
Sensitive area. Example: count:=count +2.5 (the register “count” will
continuously increment by 2.5 as long as the touch is maintained).

On Released The Action that results when a touch occurs and is removed on a
Touch Sensitive area. Example: count:=2.5 (The register “count”
contains a value of 2.5 when the Decode Text area is touched &
released).

General Text Animation Item (Graphics Mode)
This animation item displays the value of a string expression. As well as displaying string data
from the PLC or other comms devices, it can be used together with the “CallString” function to
implement custom animation types. For example, you might run a program which examines level
data, and then either returns the value formatted using the “Format” function, or an indication that
the level is too high or low. The table below lists the properties of this animation item…

Property (General) Description

Value A string expression giving the text to be displayed.

Length The length of the field on the display page. You should enter a value
from 1 to the maximum number of characters permitted by the display
page format and the cursor position. Strings longer than this value will
be clipped according to the “Justify” setting.

Mode Data-Entry or Read-Only. On Touch units, the Raise/Lower data entry
window will appear when the General Text area is touched. On non-
touch Graphic units, the Raise/Lower keys will alter the General Text.

Property (Format) Description

Font The font to be used to display the text. You can either select one of the
six resident fonts present in the terminal’s firmware, or select a font
defined in the Character Fonts section.

Justify How the message is to be formatted. This setting controls how EDICT-
97 pads-out graphical text, which is shorter than the width of the
animation item.

Color The Color to be used for the text. See Color Selection Table for
options (Page E41).

Background The Color to be used for the background. See Color Selection Table
for options (Page E41).

Property(Touch)
(Touch Units Only)

Description

Touch Sensitive Defines whether this General Text field responds to a touch stimulus.
Options are Yes or No.

Enable Can be used when the Touch Sensitive property is Yes. If an
expression is entered for this property, it must evaluate to a non-zero
value for this Integer to be Touch Sensitive.

 E60

Access Level Used with the System Security feature to control user access.

Access level can be set from “Any” up through “Level 9”.

On Pressed The Action that results when a touch occurs on a Touch Sensitive
area. Example: count:=2.5 (The register “count” contains a value of
2.5 when the General Text area is touched).

On Auto-Repeat The Action that results when a touch is maintained on a Touch
Sensitive area. Example: count:=count +2.5 (the register “count” will
continuously increment by 2.5 as long as the touch is maintained).

On Released The Action that results when a touch occurs and is removed on a
Touch Sensitive area. Example: count:=2.5 (The register “count”
contains a value of 2.5 when the General Text area is touched &
released).

Time & Date Animation Item (Graphics Mode)
This animation item is used to display a time or date.
Note that the time is always shown in 24-hour or military format.
The table below lists the general properties of this animation item…

Property (General) Description

Value The time and date to be displayed. If left as “Default”, the current time
and date will be shown. Otherwise, the value will be taken as a 32-bit
unsigned quantity representing the number of seconds elapsed since
midnight on the 1

st
 January 4197. This is the same encoding used by

all of EDICT-97’s internal time and date functions.

Template A string showing how the time or date should be formatted. Each
character in the template either represents a character to be literally
copied to the output stream, or a placeholder for time or date
information. See the table below for details of each placeholder, and
what it represents.

Template Placeholders
The table below lists the possible placeholder characters, and explains their effects…

Character Description

‘h’ Will be replaced with the next available digit of the current hour.

‘m’ Will be replaced with the next available digit of the current minute.

‘s’ Will be replaced with the next available digit of the current second.

‘Y’ Will be replaced with the next available digit of the current year.

‘M’ Will be replaced with the next available digit of the current month.

‘D’ Will be replaced with the next available digit of the current date.

 E61

Property (Format) Description

Font The font to be used to display the text. You can either select one of the six
resident fonts present in the terminal’s firmware, or select a font defined in
the Character Fonts section.

Justify How the message is to be formatted. This setting controls how EDICT-97
pads-out graphical text, which is shorter than the width of the animation item.

Color The Color to be used for the text. See Color Selection Table for options
(Page E41).

Background The Color to be used for the background. See Color Selection Table for
options (Page E41).

Property(Touch)
(Touch Units Only)

Description

Touch Sensitive Defines whether this Time and Date field responds to a touch stimulus.
Options are Yes or No.

Enable Can be used when the Touch Sensitive property is Yes. If an expression is
entered for this property, it must evaluate to a non-zero value for this Integer
to be Touch Sensitive.

Access Level Used with the System Security feature to control user access.

Access level can be set from “Any” up through “Level 9”.

On Pressed The Action that results when a touch occurs on a Touch Sensitive area.
Example: count:=2.5 (The register “count” contains a value of 2.5 when the
Time and Date area is touched).

On Auto-Repeat The Action that results when a touch is maintained on a Touch Sensitive
area. Example: count:=count +2.5 (the register “count” will continuously
increment by 2.5 as long as the touch is maintained).

On Released The Action that results when a touch occurs and is removed on a Touch
Sensitive area. Example: count:=2.5 (The register “count” contains a value of
2.5 when the Time and Date area is touched & released).

The Line Animation Item
This animation item draws a straight line between two points.
The table below lists the properties of this animation item…

Property Description

Color The Color to be used for the line. Select a Color from the list displayed
by the Alt+Down key combination. See Color Selection Table for
options (Page E41).

 E62

The Frame Animation Item
This animation item draws a rectangular frame.
The table below lists the properties of this animation item…

Property (General) Description

Color The Color to be used for the frame. Select a Color from the list
displayed by the Alt+Down key combination. See Color Selection
Table for options (Page E41).

Hide Edges Left, Right, Top or Bottom

The Rectangle Animation Item
This animation item draws a solid rectangle.
The table below lists the properties of this animation item…

Property Description

Color The Color to be used for the rectangle. Select a Color from the list
displayed by the Alt+Down key combination. See Color Selection
Table for options (Page E41).

Property(Touch)
(Touch Units Only)

Description

Touch Sensitive Defines whether this Rectangle field responds to a touch stimulus.
Options are Yes or No.

Enable Can be used when the Touch Sensitive property is Yes. If an
expression is entered for this property, it must evaluate to a non-zero
value for this Integer to be Touch Sensitive.

Access Level Used with the System Security feature to control user access.

Access level can be set from “Any” up through “Level 9”.

On Pressed The Action that results when a touch occurs on a Touch Sensitive
area. Example: count:=2.5 (The register “count” contains a value of
2.5 when the Rectangle area is touched).

On Auto-Repeat The Action that results when a touch is maintained on a Touch
Sensitive area. Example: count:=count +2.5 (the register “count” will
continuously increment by 2.5 as long as the touch is maintained).

On Released The Action that results when a touch occurs and is removed on a
Touch Sensitive area. Example: count:=2.5 (The register “count”
contains a value of 2.5 when the Rectangle area is touched &
released).

 E63

The Shadow Animation Item
This animation item draws a rectangular frame with a drop shadow.
The table below lists the properties of this animation item…

Property (General) Description

Color The Color to be used for the figure. Select a Color from the list
displayed by the Alt+Down key combination. See Color Selection
Table for options (Page E41).

Style Drop Shadow, Raised Border or Sunken Border.

The Wedge Animation Item
This animation item draws a solid triangle within a specified rectangle.
The table below lists the properties of this animation item…

Property (General) Description

Color The Color to be used for the figure. Select a Color from the list
displayed by the Alt+Down key combination. See Color Selection
Table for options (Page E41).

Orientation The position of the wedge within the rectangle. Select the required
orientation from the drop-down list by pressing the Alt+Down key
combination.

The Circle Animation Item
This animation item draws an outline circle.
The table below lists the properties of this animation item…

Property Description

Color The Color to be used for the circle. Select a Color from the list
displayed by the Alt+Down key combination. See Color Selection
Table for options (Page E41).

Property(Touch)
(Touch Units Only)

Description

Touch Sensitive Defines whether this Circle field responds to a touch stimulus. Options
are Yes or No.

Enable Can be used when the Touch Sensitive property is Yes. If an
expression is entered for this property, it must evaluate to a non-zero
value for this Integer to be Touch Sensitive.

Access Level Used with the System Security feature to control user access.

Access level can be set from “Any” up through “Level 9”.

 E64

On Pressed The Action that results when a touch occurs on a Touch Sensitive
area. Example: count:=2.5 (The register “count” contains a value of
2.5 when the Circle area is touched).

On Auto-Repeat The Action that results when a touch is maintained on a Touch
Sensitive area. Example: count:=count +2.5 (the register “count” will
continuously increment by 2.5 as long as the touch is maintained).

On Released The Action that results when a touch occurs and is removed on a
Touch Sensitive area. Example: count:=2.5 (The register “count”
contains a value of 2.5 when the Circle area is touched & released).

The Disk Animation Item
This animation item draws a solid circle.
The table below lists the properties of this animation item…

Property (General) Description

Color The Color to be used for the Disk. Select a Color from the list
displayed by the Alt+Down key combination. See Color Selection
Table for options (Page E41).

Property(Touch)
(Touch Units Only)

Description

Touch Sensitive Defines whether this Disk field responds to a touch stimulus. Options
are Yes or No.

Enable Can be used when the Touch Sensitive property is Yes. If an
expression is entered for this property, it must evaluate to a non-zero
value for this Integer to be Touch Sensitive.

Access Level Used with the System Security feature to control user access.

Access level can be set from “Any” up through “Level 9”.

On Pressed The Action that results when a touch occurs on a Touch Sensitive
area. Example: count:=2.5 (The register “count” contains a value of
2.5 when the Disk area is touched).

On Auto-Repeat The Action that results when a touch is maintained on a Touch
Sensitive area. Example: count:=count +2.5 (the register “count” will
continuously increment by 2.5 as long as the touch is maintained).

On Released The Action that results when a touch occurs and is removed on a
Touch Sensitive area. Example: count:=2.5 (The register “count”
contains a value of 2.5 when the Disk area is touched & released).

 Page F-1

Allen Bradley SLC500

Application Note

This document describes how to configure a Paradigm operator interface terminal to allow

communications with an Allen Bradley SLC500. The communications protocol supports access to

numeric registers, flags, and control actions. Please read this document carefully before attempting

to configure communications with these devices.

Allen Bradley SLC500 Using DF1 with cable P895005Z

 Page F-2

Using DF1 with cable P895005Z

Channel 0 Configuration

Current Communication Mode : SYSTEM

System Mode Driver :DF1 Full-Duplex

User Mode Driver :SHUTDOWN

Write Protect :Disabled

Mode Changes :Disabled

Mode Attention Character :\1b

System Mode Character :S

User Mode Character :U

Edit Resource/File Owner Timeout :60 (seconds)

Passthru Link ID :1

Channel 0 System Mode Configuration

Communication Driver :DF1 Full-Duplex

Diagnostic File :Reserved

Baud Rate : 9600 Parity :EVEN

Duplicate Detect :ENABLED Error Detect :BCC

ACK Timeout [x20ms] :50 NAK Retries :3

 ENQ Retries :3

Source ID :9 Embedded Responses :AUTO-DETECT

Paradigm Settings:

Comms Ports :

2 RS-232 Comms Port Allen Bradley SLC via DF1 Direct Connection 8E1 9600

Allen Bradley SLC500 Using DH-485 with cable P895013Z

 Page F-3

Using DH-485 with cable P895013Z

Channel 1 Configuration

System Mode Driver :DH-485 Master

Write Protect :Disabled

Edit Resource/File Owner Timeout :60 (seconds)

Passthru Link ID :2

Channel 1 System Mode Configuration

Communication Driver :DH-485

Diagnostic File :Reserved

Baud Rate :19200 (Note 1)

Node Address :1

Max Node Address :31

Token Hold Factor :1

Note 1: The baud rate must be 19200 for reliable communication.

Paradigm Setting:

Comms Ports :

3 RS-485 Comms Port Allen Bradley SLC via DH-485 Direct Connection 8E1 19200

Attaching to Micrologix (Must be series C or higher)
Select Micro FULL-DUPLEX in programming Software.

Using bridge cable to 1761-CBL-PM02:

Paradigm Setting:

Comms Ports:

2 RS-232 Comms Port Allen Bradley SLC via DH-485 Direct Connection 8N1 19200

Using cable P895013Z through the AIC+ module:

Use Port 3 settings on previous page.

Proper communications in a system of a Micrologix, SLC, via AIC modules to Paradigm operator interfaces can

be obtained by making the Micrologix node address the highest of the three. If more than one Micrologix is

present, see http://www.ab.com/support choose Micrologix and look at technical documents 9601 an 10519, to

assist in configuring the PLC’s

Allen Bradley SLC500

 Page F-4

This page intentionally left blank

Control Technology

 Page F-5

Control Technology

Application Note

This document describes how to configure a Paradigm operator interface terminal to allow

communications with a Control Technology Automation Controller. The communications protocol

supports access to numeric registers, flags, and control actions. Please read this document carefully

before attempting to configure communications with these devices.

Control Technology Introduction

 Page F-6

Introduction
The EDICT-97 configuration software has been designed to allow the user to enter a Parameter mnemonic and

number in a manner that should be familiar to a user of a Control Technology Automation Controller. The driver

allows the exchange of data with the Controller.

Accessing Data
The Control Technology Automation Controller communications protocol allows access to a number of

parameters over a serial communications link. The driver described here supports a subset of these parameters

and these are given in the table below.

Parameter Mnemonic Range Data Type Access

 Numeric Register REG 00001..65535 32-bit Signed Read/Write

 Flag FLAG 01..32 Individual Byte Read/Write

 Start Controller RUN -- -- Write

 Stop Controller STOP -- -- Write

 Reset Controller RST -- -- Write

Writing 0 to a Flag will clear the flag, while writing 255 (0xFF) will set the flag. Writing any other number to a

flag will provide indeterminate results.

Knowledge of Unit Operation Is Assumed
In all cases, the simple principle of ‘pass-through’ is maintained: there is no attempt to validate a value in terms

of the end use of the unit: both familiarity with the control functions and knowledge of system operation are

assumed.

Communications
Communications with the Control Technology Automation Controller is via an RS-232, point to point link, with

default serial communications format of baud rate 9600, 8 data bits, No parity, and 1 stop bit.

The connections details are described in the table below.

Paradigm unit (RS 232 port)

Control Technology

Automation Controller

(RS232 Modular Jack)

Pin 1 (Tx) Pin 5 (RxD)

Pin 2 (Rx) Pin 2 (TxD)

Pin 3 (RTS)

Pin 4 (CTS)

Pin 5 (0v) Pin 3 (GND)

In addition a link must be fitted between Pin 3 (RTS) and Pin 4 (CTS) on the Paradigm unit.

KEB Frequency Inverter Communications

 Page F-7

KEB Frequency Inverter

Application Note

This document describes how to configure a Paradigm operator interface terminal so as to allow

communications with a KEB Frequency Inverter. The communications protocol supports access to

all parameters and parameter sets. Please read this document carefully before attempting to

configure communications with these devices.

KEB Frequency Inverter Introduction

 Page F-8

Introduction
The EDICT-97 configuration software has been designed to allow the user to enter a Parameter Set and a

Communications Parameter Address in a manner that should be familiar to a user of a KEB Frequency Inverter.

Accessing Data
Each Parameter in the KEB Frequency Inverter has a communications address. In addition the KEB Frequency

Inverter has 8 Parameters Set (0..7). Certain Parameters are programmable, meaning that they exist 8 times in the

inverter and can be assigned with different values independent of each other. In order that the parameter in the

required set is accessed there is a Bus Parameter Set containing the Parameter Set currently accessible via serial

link.

When the user is configuring a Communications Block in EDICT-97, the required parameter is referenced in one

of 2 forms:

s.iiii

iiii

where s is the required parameter set and iiii is the Parameter communications address, entered as a Hexadecimal

value in the range 0..7FFF.

The driver will change the Bus Parameter Set prior accessing the parameter. It makes sense therefore to group

Parameters from the same Parameter Set in the same Communication Block.

Some parameters are read-only and others may only be written to when the drive is disabled. Attempts to write to

these, or to access non-existent parameters will be gracefully ignored, communications will not be failed.

Knowledge Of Unit Operation Is Assumed
In all cases, the simple principle of ‘pass-through’ is maintained: there is no attempt to validate a value in terms

of the end use of the unit: both familiarity with the parameters and knowledge of system operation are assumed.

Communications
EDICT supports RS232 and RS485 connections with a KEB Frequency Inverter, the connection details being

described below:

KEB (9 pole D-Sub male) Paradigm RS232 port

3 1 Tx

2 2 Rx

- 3 CTS

- 4 RTS

7 5 0v

In addition a link must be made between connectors 3 (CTS) and 4 (RTS) on the Paradigm Operator Interface.

KEB (9 pole D-Sub male) Paradigm RS485 port

5 6 TxA

6 7 TxB

8 8 RxA

9 9 RxB

- 10 0v

In addition a 1k8 resistor must be placed between connectors 9 (RxB) and 10 (0v) on the Paradigm Operator

Interface.

The default serial communication parameters are as follows, baud rate of 9600, 7 data bits, even parity, and 1

stop bit.

Panasonic (Minas Series) AC Servo Drive

 Page F-9

Panasonic (Minas Series) AC Servo

Drive

Application Note

This document describes how to configure a Paradigm operator interface terminal to allow

communications with a Panasonic Minas Series AC Servo Drive. It describes the parameters that

can be accessed and the controls actions that can be issued to the Drive. Please read this document

carefully before attempting to configure communications with these devices.

Panasonic (Minas Series) AC Servo Drive Introduction

 Page F-10

Introduction
The EDICT-97 configuration software has been designed to allow the user to enter a Parameter mnemonic and

Number if applicable in a manner that should be familiar to a user of a Panasonic Minas Series AC Servo Drive.

The driver allows the exchange of data with the Drive, and control actions to be issued to the Drive.

Accessing Data
The Minas Series communications protocol allows access to a number of Parameters over a serial

communications link. The driver described here supports a subset of these parameters and these are given in the

table below.

Parameter Range Description

User 00..3E Servo Parameter

System 00..08 Servo Parameter

Step 01..28 NC Parameters – Step Data

Velocity 00..15 NC Parameters – Velocity Data

Data 00..12 NC Parameters – NC Data

Offset n/a NC Parameters –Offset Data

Input n/a NC Parameters – Input Port

Output n/a NC Parameters – Output Port

Position n/a Current Position

Speed n/a Current Speed

Torque n/a Current Torque

Error n/a Current Position Error

Alarm 0..6 Alarm Contents

Hist 1..12 Alarm History

CmdError n/a Last DeviceCommand Error

In addition, the Step Data is composed of three sub elements, Position Data, Speed Select No, and Positioning

Mode Select. These are accessible individually.

In addition, the Offset Data is composed of four sub elements, Origin Offset, Positive Software Limit, Negative

Software Limit, and Auxiliary Information 1 and 2. These are accessible individually.

In addition CmdError gives the most recent error reported by the Minas Series Drive in response to a

DeviceCommand request. The value gives the Error in the low byte and the Command in the high byte, of the

low word.

Control Actions
Often control actions are required to be executed in a particular order in the Drive. EDICT 97 provides the

function DeviceCommand() which when called will guarantee the command is issued to the Drive in the order

that they occur in the terminal. It has the following syntax :

DeviceCommand(device, "command", parameter)

where :

device is the device number from the Device Table

command is the is a string interpreted in the following way

parameter is the value associated with the Command.

There are three distinct command string formats, described below. In all cases the C is the command, and M is

the Mode, in Hexadecimal format.

DeviceCommand(D, “CMn”, P)

When the third character is lower-case n, the parameter number P is included in the command issued to the

Drive. This is most applicable for a Step Command where the parameter is the Step Number.

For example, the following command DeviceCommand(1, “60n”, 3), would result in the Stepping command

with step No 3 being sent to the Minas Drive on device 1.

DeviceCommand(D, “CM123”, P)

Panasonic (Minas Series) AC Servo Drive Knowledge of Unit Operation Is Assumed

 Page F-11

When the command and more characters are followed by any number of numerical characters, these will appear

in the command exactly as entered. This is most applicable for the Jog command.

For example, the following command DeviceCommand(1, “5001”, 0), would result in the Jog command with

Jogging Low Speed in the (+) direction being sent to the Minas Drive on device 2. The parameter number P is

ignored.

DeviceCommand(D, “CM”, P)

When only the Command and Mode characters appear in the string, the simplest command is sent to the drive.

This is most applicable for commands such as the Stop or Org command.

For example, the following command DeviceCommand(5, “30”, 0), would result in the Stop command being

sent to the Minas Drive on device 2. The parameter number P is ignored.

Knowledge of Unit Operation Is Assumed
In all cases, the simple principle of ‘pass-through’ is maintained: there is no attempt to validate a value in terms

of the end use of the unit: both familiarity with the control functions and knowledge of system operation are

assumed.

Communications
Communications with the Minas Series AC Drive is via an RS-232, point to point link, with default serial

communications format of baud rate of 9600, 8 data bits, No parity, and 1 stop bit.

The connections details are described in the table below.

Paradigm unit (RS 232 port) Minas Series Drive (MNI DIN8)

Pin 1 (Tx) Pin 5 (RXD)

Pin 2 (Rx) Pin 3 (TXD)

Pin 3 (RTS)

Pin 4 (CTS)

Pin 5 (0v) Pin 4 (0v)

In addition a link must be fitted between Pin 3 (RTS) and Pin 4 (CTS) on the Paradigm unit.

