Technical Note tndaj

Counter C does not equal A-B or A+B

Product(s): PAXI, PAXC

Problem Description: When counter C is used to display the sum or difference of counters A \& B in the PAXI or PAXC rate/counter meters, the formula $C=A-B$, or $C=A+B$ is only true if counters A and B have not been reset or all counters ($\mathrm{A}, \mathrm{B}, \& \mathrm{C}$) have been reset simultaneously. When only one or two of the three counters ($\mathrm{A}, \mathrm{B}, \& \mathrm{C}$) are reset, counter C represents an accumulation of counter A \& B inputs only and not the true sum or difference of their displayed values.

The PAXI and PAXC literature, PAXC - X, PAXI - X, and PAXICR - X, are misleading when describing the operation of Counter C . The description of Sub Ab states "Counter C counts the incoming pulses from Counter A and B inputs as per Counter A and B modes of operation and subtracts the B counts from the A counts." However, If both A \& B counters are programmed for Count X 1 , and counter C is programmed for "Sub Ab" an input to counter A will cause 1 to be added to the value of counter C and an input to counter B will cause a 1 to be subtracted to the value of counter C. If counter C is programmed for "Add Ab", an input to either the A or B counters will cause 1 to be added to the value of counter C. This is the function of the C counter regardless of the displayed values of counters A \& B. If at anytime these counters are reset individually, The value in Counter C will no longer represent the sum or difference of Counter A \& B displayed values.

Example 1: Counter C is programmed to $\mathrm{Sub} \mathrm{Ab}(\mathrm{C}=\mathrm{A}-\mathrm{B})$. After all three counters are reset to 0 the following sequence is true:

$$
\begin{aligned}
& \text { (A) } 10-\text { (B) } 5=\text { (C) } 5 \\
& \text { (A) } 10-\text { (B) } 6=\text { (C) } 4 \\
& \text { (A) } 10-\text { (B) } 7=\text { (C) } 3
\end{aligned}
$$

If counters $A \& B$ were reset at this point in the sequence, the sequence will continue as follows:

$$
\begin{aligned}
& (A) 0-(B) 0=(C) 3 \\
& (A) 1-\text { (B) } 0=(C) 4 \\
& \text { (A) } 2-\text { (B) } 0=(C) 5 \\
& \text { (A) } 2-\text { (B) } 1=\text { (C) } 4
\end{aligned}
$$

$$
\begin{aligned}
& (A) 2-(B) 2=(C) 3 \\
& (A) 2-(B) 12=(C)-7
\end{aligned}
$$

Example 2: Counter C is programmed to $A d d A b(C=A+B)$ After all three counters are reset to 0 the following sequence is true:

$$
\begin{aligned}
& (A) 1+(B) 0=(C) 1 \\
& (A) 1+(B) 1=(C) 2 \\
& (A) 1+(B) 2=(C) 3
\end{aligned}
$$

If counters $A \& B$ were reset at this point in the sequence, the sequence will continue as follows:

$$
\begin{gathered}
(A) 0+(B) 0=(C) 3 \\
(A) 1+(B) 0=(C) 4 \\
(A) 2+(B) 0=(C) 5 \\
(A) 2+(B) 1=(C) 6 \\
(A) 2+(B) 2=(C) 7 \\
(A) 2+(B) 12=(C) 17
\end{gathered}
$$

Example 3: Counter C is programmed to $A d d A b(C=A+B)$ After all three counters are reset to 0 the following sequence is true:

$$
\begin{aligned}
& (A) 1+(B) 0=(C) 1 \\
& (A) 1+(B) 1=(C) 2 \\
& (A) 1+(B) 2=(C) 3
\end{aligned}
$$

If counter B is reset and counters A and C are not, the sequence would continue as follows:

$$
\begin{gathered}
(A) 1+(B) 0=(C) 3 \\
(A) 1+(B) 1=(C) 4 \\
(A) 1+(B) 2=(C) 5 \\
(A) 2+(B) 2=(C) 6 \\
(A) 3+(B) 2=(C) 7 \\
(A) 3+(B) 12=(C) 17
\end{gathered}
$$

Example 4: Counter C is programmed to $\mathrm{Sub} \mathrm{Ab}(\mathrm{C}=\mathrm{A}-\mathrm{B})$ After all three counters are reset to 0 the following sequence is true:

$$
\begin{aligned}
& (A) 1-(B) 0=(C) 1 \\
& (A) 1-(B) 1=(C) 0 \\
& \text { (A)2-(B)1 }=(C) 1
\end{aligned}
$$

If counter B is reset and counters A and C are not, the sequence would continue as follows:

$$
\begin{aligned}
& (A) 2-(B) 0=(C) 1 \\
& (A) 2-(B) 1=(C) 0 \\
& (A) 3-(B) 1=(C) 1 \\
& (A) 3-(B) 2=(C) 0 \\
& (A) 3-(B) 3=(C)-1 \\
& (A) 6+(B) 3=(C) 2
\end{aligned}
$$

Cause of the Problem: This is the functionality of all PAXI and PAXC meters.
Corrective Action: This is the way the meter was designed to work. This allows the customer to calculate the sum or difference of the total number of input pulses to counters A and B despite the displayed values of these counters. If the counter C value is to always equal the sum or difference of counters A and B , counters A, B \& C must all be reset simultaneously.

Corrective Action Implementation: N/A

