Technical Note

Title: Rate Scaling

Product(s): Ditak6, Ditak7, Ditak8, Ditak9, APLR

DITAK6, DITAK7, DITAK8 and APLR

Step 1: Determine Timebase Increment Total (TBIT)

Desired Reading (DR) X Desired Display Point (DDP) X Product Constant*
Corresponding Revolutions per Minute (RPM) X Pulses per Rev (PPR)

DR: Desired reading at a specific RPM. (If displaying RPM then remove DRV and RPM from equation.)
DDP: $0($ whole $\#)=1,0.0$ (tenths of unit) $=10,0.00$ (hundreds of unit) $=100$ (Ditak 8 does not have DDS)
*Product Constant: DITAK6 \& DITAK7 = 15,360, DITAK8 $=15,361$, APLR0 $=15,000$
RPM: The corresponding RPM for the DR
PPR: Pulse per one revolution or one unit of measure

Step 2: Enter Timebase Increment Total (TBIT)
Set to the "ON" position the Time Base DIP switches which together adds to the above TBIT.
Step 3: Review The Display Update Time
The display update time in seconds $=$ TBIT $\times 0.004$
To improve the update time:

1. Enable frequency doubling and lower the TBIT and display update value by half.
2. Lower DDS by one position and lower the TBIT and display update value by a factor of 10 .

General Rule
2 pulses per rev $=30$ second update
20 pulses per rev $=3$ second update
200 pulses per rev $=.3$ second update

DITAK9

Using Known RPM

Step 1: Calculate Time Base

Desired Reading (DR) X Desired Display Point (DDP)
 Hertz (HZ)

Step 2: Round Time Base (RTB) Round the Calculated Time Base to nearest number between 1-7
Step 3: Calculate the Remainder Multiplier (RM)
Desired Reading (DR) X Desired Display Point (DDP)
Rounded Time Base (RTB) X Hertz (HZ)
DR: Desired Reading at the specified RPM
Hertz (HZ): RPMs X Pulses per Revolution 60
DDP: $0($ whole unit $)=1,0.0($ tenths of unit $)=10,0.00($ hundreds of unit $)=100$
If RM is greater than 1.9999 , then remove a decimal location or add more pulses per revolution.

Using Known Pulses per Unit

Step 1: Calculated Time Base

$$
\frac{\text { Time Factor (TF) X Desired Display Point (DDP) }}{\text { Pulses Per Unit (PPU) }}
$$

Step 2: Round Time Base (RTB) Round the Calculated Time Base to nearest number between 1-7.
Step 3: Remainder Multiplier (RM)
Time Factor (TF) X Desired Display Point (DDP)
Rounded Time Base (RTB) X Pulses Per Unit (PPU)
Time Factor: Second $=\mathbf{1}$, Minute $=\mathbf{6 0}$, Hour $=\mathbf{3 6 0 0}$
DDP: $0($ whole unit $)=\mathbf{1}, 0.0($ tenths of unit $)=\mathbf{1 0}, 0.00($ hundreds of unit $)=\mathbf{1 0 0}$
RM is greater than 1.9999, then remove a decimal location or add more pulses per revolution.

