
 Industrial Automation Using Raw Port Drivers
Tech Note 10
Using Raw Po
Abstract:

This document describes the use of Raw Port drivers to send and receive ASCII data to compatible
Red Lion Controls (RLC) products.

Products:

Red Lion Controls CR1000 Human Machine Interface (HMI), CR3000 HMI, Data Station Plus

(Excludes LE), G3 HMI, G3 Kadet HMI, Graphite® Controller, Graphite HMI, Modular Controller
(Excludes LE and V2), and ProducTVity Station™

Use Case:

Raw Port drivers are used when Crimson does not have a driver for a particular device, or when
ASCII data needs to be transferred.

Required Software:

Crimson® 3.0 or 3.1

Required Operating System:

Microsoft Windows 2000, or above
rt Drivers 1

Using Raw Port Drivers TNIA10 Rev D
Introduction

The port number is used as an argument in all of the functions associated with sending and receiving data through
a raw port. In order to identify the port number, start Crimson and click on the Communications section of the
Navigation pane, as shown in Figure 1. After the Communications - RS-485 Comms Port popup appears, refer to
the upper right of the Editing Pane or the lower left of the Crimson window in the status bar; Port Number 2 in this
example.

Figure 1.

NOTE: Crimson support for Raw Port drivers requires Crimson 3.0 or higher and is only available
to Windows 2000 or above users. Please update your version of Crimson to the latest,
available online at: www.redlion.net.

When a Raw Driver is assigned to a port, the On Update parameter is used to define an action that occurs during
every communications scan; this is the location that calls a program that acts as a receive routine.

The majority of the code examples that follow were sourced from the corresponding Crimson 3.0 database file:
http://files.redlion.net/filedepot_download/1378/7105.

The first three (3) sections use the RLC Instrument protocol for their examples, specifically communicating to a
PAXI. See page 25 of the PAXI datasheet/manual for the protocol specification: http://files.redlion.net/filede-
pot_download/213/5263.
2 Using Raw Port Drivers

http://files.redlion.net/filedepot_download/213/5263
http://files.redlion.net/filedepot_download/213/5263
http://files.redlion.net/filedepot_download/1378/7105

Using Raw Port Drivers TNIA10 Rev D
Basic

Transmitting Fixed Strings
Transmitting a fixed string requires only one function and one line of code:

Display Entire Received Message
To read a string from the port's buffer, use the PortInput function:

This will return any ASCII characters that precede a <CR>; if 500ms goes by without a <CR> then it will return a
null string. In order to hold the last valid (non-null) received string, an IF statement will be required to verify what
was received before populating a tag:

Here is the code for a full receive routine:

Send N01TA$

PortPrint(2, "N01TA$");

Send 123<CR><LF> (123<carriage return><linefeed>)

PortPrint(2, "123\r\n");

input = PortInput(2, 0, 13, 500, 0);

if(input != "") {

 Basic.Response = input;
 }

cstring input;

input = PortInput(2, 0, 13, 500, 0);

if(input != "") {

 Basic.Response = input;
 }
Using Raw Port Drivers 3

Using Raw Port Drivers TNIA10 Rev D
Intermediate

Transmitting Strings with Embedded Variables
In order to embed variables into a string transmission, the variable must be made into a string (if it is not already)
and then concatenated with other strings before transmission:

or,

or,

Parsing Received String
As in the Basic section, the buffer needs to be read and checked for a non-null string. Depending on the data
format, different parsing techniques may be required, including:

1.The first X characters are a portion of the transmission that needs to be separated:

2.The next portion of the transmission is X characters after the first space:

3.The final portion is the last 12 characters, but is padded with spaces:

PortPrint(2, "N1VM" + IntToText(Intermediate.Write, 10, 5) + "$");

output = "N1VM" + IntToText(Intermediate.Write, 10, 5) + "$";

PortPrint(2, output);

output = "N1VM";
output += IntToText(Intermediate.Write, 10, 5);
output += "$";

PortPrint(2, output);

input = PortInput(2, 0, 13, 500, 0);

if(input != "") {

 Node = Left(input, 2);

 space = Find(input, 32, 0);
 Mnemonic = Mid(input, space+1, 3);

 temp = Strip(Right(input, 12), ' ');
 Value = TextToInt(temp, 10);
4 Using Raw Port Drivers

Using Raw Port Drivers TNIA10 Rev D
Here is the code for a full receive routine:

cstring input;
cstring temp;

int space;

input = PortInput(2, 0, 13, 500, 0);

if(input != "") {

 Intermediate.Node = TextToInt(Left(input, 2), 10);

 space = Find(input, 32, 0);
 Intermediate.Mnemonic = Mid(input, space+1, 3);

 temp = Strip(Right(input, 12), ' ');
 Intermediate.Value = TextToInt(temp, 10);
 }
Using Raw Port Drivers 5

Using Raw Port Drivers TNIA10 Rev D
Advanced

Cyclically Polling Parameters
If more than a single transmission is required to gather all of the needed data, a state machine can be used to cycle
through the different transmissions:

Interrupt Polling to Issue Write
If there is a need to write, the polling may need to wait while the write request is serviced. This can be
accomplished by using an IF statement before entering the state machine, such as:

switch(State) {

 // poll counter A
 case 0:

 output = "N01TA$";
 break;
 // poll rate
 case 1:

 output = "N01TD$";
 break;
 // poll setpoint 1
 case 2:

 output = "N01TM$";
 break;

 }

// need to write?
if(NeedToWrite) {

 NeedToWrite = 0;
 // generate output
 output = "N1VM";
 output += IntToText(Write, 10, 5);
 output += "$";

 // clear the port's buffer
 ClearRx(port);

 // send command
 PortPrint(2, output);
 // exit program
 return;
 }
6 Using Raw Port Drivers

Using Raw Port Drivers TNIA10 Rev D
Receive: Assuming Data Received Is What Was Requested
If the incoming data is assumed to be correct, or if there are no identifiers in the response, a similar state machine
can be used:

// populate correct tag based on what was requested
switch(State) {

 // counter A
 case 0:
 CountA = value;
 break;
 // rate
 case 1:
 Rate = value;
 break;
 // setpoint 1
 case 2:
 Setpoint1 = value;
 State = -1;
 break;
 }

// increment state to poll the next value
State ++;
Using Raw Port Drivers 7

Using Raw Port Drivers TNIA10 Rev D
Receive: Response Includes Identification of Data
If the incoming data includes identifiers in the response, they can be used to determine which tag to populate:

Receive: Byte-by-Byte
Receiving byte-by-byte is required for ASCII protocols, but can also be used for troubleshooting or if the format of
the response is unknown. The received data can be loaded into an array, or a string can be built from it; the
following code does both:

// parse response
// Node Address is the first 2 characters
node = TextToInt(Left(input, 2), 10);

// the Mnemonic follows a space after the node
// find the space
space = Find(input, 32, 0); // could also use find(input, ' ', 0)
mnemonic = Mid(input, space+1, 3);

// the data is the last 12 bytes, padded with spaces, which need to be removed
temp = Strip(Right(input, 12), ' '); // could also use strip(left(input, 12), 32);
value = TextToInt(temp, 10);

// populate correct tag based on what was received

if(mnemonic == "CTA") {

 CountA = value;
 }

else if(mnemonic == "RTE") {

 Rate = value;
 }

else if(mnemonic == "SP1") {

 Setpoint1 = value;
 }

// this Rx routine will allow you to display all of the bytes received in a transmission
// declare locals
int i;
int j;
int in = PortRead(3, 100);

// loop while there is data in the buffer, populating the array
while(in != -1) {

 Array[i++] = in;
 in = PortRead(3, 100);
 }
// if something was received, build a string
if(i > 0) {

 String = "";
 for(j = 0; j <= i; j ++){

 String += Array[j];
 }
 }
8 Using Raw Port Drivers

Using Raw Port Drivers TNIA10 Rev D
Raw UDP

Transmitting
Unlike the Raw TCP/IP drivers, the only configurable property is the port that it listens on. Part of the transmission
includes both the target IP address, target UDP port, and byte count. Refer to the following:

Receiving
Unlike the other raw port drivers, the UDP buffer contains more than just response data. It uses an “R” to identify
the beginning of a response, followed by the source IP address, the port it came in on, and the byte count. Refer to
the following:

// Target IP = 192.168.50.11
PortWrite(4, 192);
PortWrite(4, 168);
PortWrite(4, 50);
PortWrite(4, 11);

// Target Port = 0x1234
PortWrite(4, 0x12);
PortWrite(4, 0x34);

// Byte Count = 11
PortWrite(4, 0);
PortWrite(4, 11);

// UDP Data (0123456789<CR>)
PortPrint(4, "0123456789\r");

// Check for Frame
if(PortRead(4, 0) == 'R') {

 // Read Source IP
 RxIP = PortRead(4, 0) << 24;
 RxIP |= PortRead(4, 0) << 16;
 RxIP |= PortRead(4, 0) << 8;
 RxIP |= PortRead(4, 0) << 0;

 // Read Source Port
 RxPort = PortRead(4, 0) << 8;
RxPort |= PortRead(4, 0) << 0;

 // Read Length
 RxCount = PortRead(4, 0) << 8;
RxCount |= PortRead(4, 0) << 0;

 // Read Data
 Fill(RxData[0], 0, 40);

 int n;

 for(n = 0; n < RxCount; n++) {

 RxData[n] = PortRead(4, n);
 }

 // Increment Sequence
 RxSeq++;
 }
Using Raw Port Drivers 9

Using Raw Port Drivers TNIA10 Rev D
Clearing Receive Buffer

Reading from the buffer removes the data from it. A while loop can be used to clear out old data, as follows:

Disclaimer

It is the customer's responsibility to review the advice provided herein and its applicability to the system. Red Lion
makes no representation about specific knowledge of the customer's system or the specific performance of the
system. Red Lion is not responsible for any damage to equipment or connected systems. The use of this document
is at your own risk. Red Lion standard product warranty applies.

Red Lion Technical Support

If you have any questions or trouble contact Red Lion Technical Support by emailing support@redlion.net or calling
1-877-432-9908.

For more information: http://www.redlion.net/support/policies-statements/warranty-statement

// loop until buffer is empty
while(PortRead(2, 0) != -1) {}
10 Using Raw Port Drivers

mailto:support@redlion.net
http://www.redlion.net/support/policies-statements/warranty-statement

	Industrial Automation Using Raw Port Drivers
	Abstract:
	Products:
	Use Case:
	Required Software:
	Required Operating System:
	Introduction
	Basic

	Transmitting Fixed Strings
	Display Entire Received Message
	Intermediate

	Transmitting Strings with Embedded Variables
	Parsing Received String
	Advanced

	Cyclically Polling Parameters
	Interrupt Polling to Issue Write
	Receive: Assuming Data Received Is What Was Requested
	Receive: Response Includes Identification of Data
	Receive: Byte-by-Byte
	Raw UDP

	Transmitting
	Receiving
	Clearing Receive Buffer
	Disclaimer
	Red Lion Technical Support
	If you have any questions or trouble contact Red Lion Technical Support by emailing support@redlion.net or calling 1-877-432-9908.

