ANT2458Q5P2 Antenna

N-Tron Networking Series

▶▶▶ Compact, Dual-Band, 1/2 Wave Antenna

The *ANT245805P2* is a compact, dual-band, 1/2 wave antenna covering the 2.45 and 5.8GHz bands. The antenna features a tilt and swivel joint which allows it to be oriented at straight or right angles to the product or folded for storage and shipment. It attaches to the 702M12-W via an RP-TNC connector

702M12-W APPLICATIONS

- Wireless LAN applications
- Client antennas
- 802.11b/g/n applications

SPECIFICATIONS

Frequencies: Band 1: 2.4Ghz

Band 2: 5.8GHz

Gain @ 2.4GHz: 2 dBi
Gain @ 5.8GHz: 5 dBi
Polarization: Vertical
VSWR: < 2
Impedance: 50 ohms

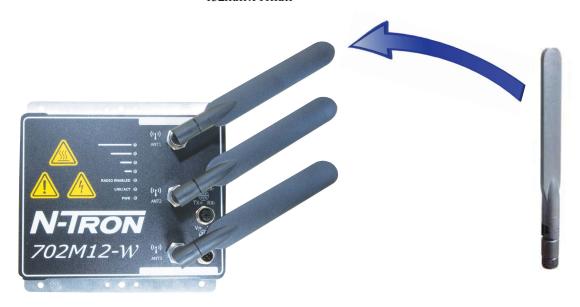
Impedance: 50 ohms
Maximum Input Power: 5 Watts
Operating Temperature: -40° to 70° C

Weight: 150g Dimensions (Length x Diameter): 6" x 0.43"

152mm x 11mm

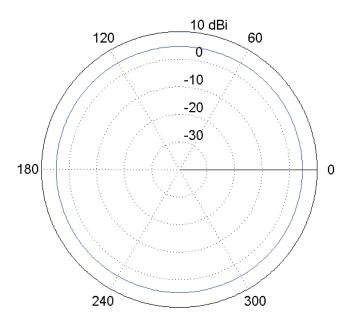
Range Estimates - 2.4GHz

Throughput	26Mbps	100Mbps
Distance (Miles)	1.35	0.12
Distance (kilometers)	2.18	0.19
Tx Power	22dBm	15dBm
Receive Sensitivity	-91dBm	-77dBm
Number of Spacial Streams	2	2

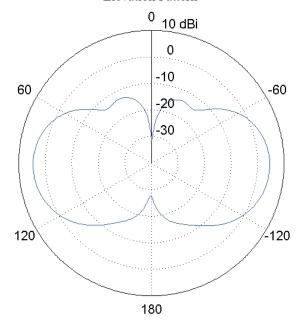

Range Estimates - 5.8GHz

Throughput	26Mbps	100Mbps
Distance (Miles)	1.02	0.09
Distance (kilometers)	1.64	0.15
Tx Power	22dBm	15dBm
Receive Sensitivity	90dBm	-76dBm
Number of Spacial Streams	2	2

*Given the following parameters:


- Free Space loss / 2-ray ground reflection models
 Antenna is mounted directly onto an *N-TRON 702-W* Ethernet Radio mounted twenty-five (25) feet above
 - ground level.
- Clear line of sight between radios with no obstructions of the first Fresnel Zone
- 20MHz wide signal
- Center frequency = 2.452GHz or 5.805GHz
- 10dB loss assumed for weather conditions

Range estimates are theoretical. Actual results may vary based on installation conditions. A site survey should be performed as part of the planning process to determine the presence of RF interference and identify optimum installation locations for access points and antennas.



Azimuth Pattern

Elevation Pattern

