GENERAL DESCRIPTION
The Large Display is a versatile display available as a DC volt, current, or process meter with scaling, serial communications and dual relay outputs. The 5 digit displays are available in either 2.25” or 4” high red LED digits with adjustable display intensities. The 2.25” high models are readable up to 130 feet. The 4” high models are readable up to 180 feet. Both versions are constructed of a NEMA 4X/IP65 enclosure in light weight aluminum. All models also come with dual Form C relay outputs and RS232 / RS485 serial communications.

SAFETY SUMMARY
All safety regulations, local codes and instructions that appear in this and corresponding literature, or on equipment, must be observed to ensure personal safety and to prevent damage to either the instrument or equipment connected to it. If equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>DESCRIPTION</th>
<th>PART NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD2A</td>
<td>2.25” High 5 Digit Red LED Volt/Current Meter w/ Relay Output and RS232/RS485 Serial Comms</td>
<td>LD2A05P0</td>
</tr>
<tr>
<td>LD4A</td>
<td>4” High 5 Digit Red LED Volt/Current Meter w/ Relay Output and RS232/RS485 Serial Comms</td>
<td>LD4A05P0</td>
</tr>
<tr>
<td>LD Plug</td>
<td>Cord Grip Plug for LD models</td>
<td>LDPLUG00</td>
</tr>
</tbody>
</table>

* Required to maintain Type 4X/IP65 specification, if end plate cord grip does not have cable installed.

SPECIFICATIONS

1. DISPLAY: 5 digit, 2.25” (57 mm) or 4” (101 mm) intensity adjustable Red LED (-99999 to 99999)

2. POWER REQUIREMENTS:
 - AC POWER: 50 to 250 VAC 50/60 Hz, 26 V A
 - DC POWER: 21.6 to 250 VDC, 11 W
 - DC Out: +24 VDC @ 100 mA if input voltage is greater than 50 V AC/VDC
 - +24 VDC @ 50 mA if input voltage is less than 50 VDC
 - Isolation: 3000 Vrms for 1 min. to all inputs and outputs

3. INPUT RANGES:
 - Jumper Selectable
 - D.C. Voltages: 200 mV , 2 V , 20 V , 200 V , 10 V
 - D.C. Currents: 200 µA, 2 mA, 20 mA, 200 mA
 - D.C. Process: 4 to 20 mA, 1 to 5 VDC, 0/1 to 10 VDC

4. OVERRANGE/UNDERRANGE INDICATION:
 - Input Overrange Indication: “OLOL”.
 - Input Underrange Indication: “ULUL”.
 - Display Overrange/Underrange Indication: “....”/“....”

DIMENSIONS

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>X (Length)</th>
<th>Y (Height)</th>
<th>Z (Center)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD2A05P0</td>
<td>16 (406.4)</td>
<td>4 (101.6)</td>
<td>12 (304.3)</td>
</tr>
<tr>
<td>LD4A05P0</td>
<td>26 (660.4)</td>
<td>7.875 (200)</td>
<td>22 (558.8)</td>
</tr>
</tbody>
</table>
5. **A/D CONVERTER:** 16 bit resolution
 - A/D Conversion Rate: 6 readings/sec.

6. **DISPLAY RESPONSE TIME:** 500 msec min.

7. **USER INPUT:**
 - Software selectable pull-up (8.6 KΩ) or pull-down resistor (3.9 KΩ) that determines active high or active low input logic.
 - Trigger levels: \(V_{IL} = 1.0 \text{ V} \) max; \(V_{IH} = 2.4 \text{ V} \) min; \(V_{MAX} = 28 \text{ VDC} \)
 - Response Time: 5 msec typ.; 50 msec debounce (activation and release)

8. **COMMUNICATIONS:**
 - Type: RS485 or RS232
 - Isolation To Sensor & User Input Commons: 500 Vrms for 1 min.
 - Working Voltage: 50 V . Not Isolated from all other commons.
 - Data: 7/8 bits
 - Parity: no, odd or even
 - Baud Rate: 300 to 38.4 K
 - Bus Address: Selectable 0 to 99, Max. 32 meters per line (RS485)

9. **MEMORY:** Nonvolatile E²PROM retains all programming parameters and max/min values when power is removed.

10. **OUTPUT:**
 - Type: Single FORM-C relay
 - Isolation To Sensor & User Input Commons: 1500 Vrms for 1 min.
 - Working Voltage: 150 Vrms
 - Contact Rating: 5 amps @ 120/240 VAC or 28 VDC (resistive load), 1/8 H.P. @ 120 VAC (inductive load)
 - Life Expectancy: 100,000 minimum operations
 - Response Time:
 - Turn On Time: 4 msec max.
 - Turn Off Time: 4 msec max.

11. **ENVIRONMENTAL CONDITIONS:**
 - Operating temperature: 0 to 65 °C
 - Storage temperature: -40 to 70 °C
 - Operating and storage humidity: 0 to 85% max. RH (non-condensing)
 - Vibration to IEC 68-2-6: Operational 5 to 150 Hz, 2 g (1 g relay).
 - Shock to IEC 68-2-27: Operational 30 g (10 g relay).
 - Altitude: Up to 2,000 meters

12. **CONNECTIONS:**
 - Internal removable terminal blocks
 - Wire Strip Length: 0.4" (10 mm)
 - Wire Gage: 24-12 AWG (0.51-2.05 mm) copper wire, 90 °C rated insulation only
 - Torque: 5.3 inch-lbs (0.6 N-m) max.
 - Cable Diameter: Outside diameter must be 0.181" (4.6 mm) to 0.312" (7.9 mm) to maintain Type 4X rating of cord grips.

13. **CONSTRUCTION:**
 - Aluminum enclosure, and steel side panels with textured black polyurethane paint for scratch and corrosion resistance protection. Meets Type 4X/IP65 specifications. Installation Category II, Pollution Degree 2.

14. **CERTIFICATIONS AND COMPLIANCES:**
 - CE Approved
 - EN 61326-1 Immunity to Industrial Locations
 - Emission CISPR 11 Class B
 - Safety requirements for electrical equipment for measurement, control, and laboratory use:
 - EN 61010-1: General Requirements
 - EN 61010-2-030: Particular Requirements for Testing and Measuring Circuits
 - RoHS Compliant
 - UL Listed: File #E137808
 - Type 4X Indoor/Outdoor Enclosure rating
 - IP65 Enclosure rating

15. **WEIGHT:**
 - LD2A05XX - 4.5 lbs (2.04 kg)
 - LD4A05XX - 10.5 lbs (4.76 kg)

1.0 Installing the Meter

INSTALLATION

The meter meets NEMA 4X/IP65 requirements when properly installed.

INSTALLATION ENVIRONMENT

The unit should be installed in a location that does not exceed the operating temperature. Placing the unit near devices that generate excessive heat should be avoided. The unit should only be cleaned with a soft cloth and neutral soap product. Do NOT use solvents.

Continuous exposure to direct sunlight may accelerate the aging process of the front overlay. Do not use tools of any kind (screwdrivers, pens, pencils, etc.) to operate the keypad of the unit.

2.0 Setting the Jumpers

INPUT RANGE JUMPER

This jumper is used to select the proper input range. The input range selected in programming must match the jumper setting. Select a range that is high enough to accommodate the maximum signal input to avoid overloads. To access the jumper, remove the side cover of the meter.

Warning: Exposed line voltage exists on the circuit boards. Remove all power to the meter and load circuits before accessing inside of the meter.

3.0 Wiring the Meter

EMC INSTALLATION GUIDELINES

Although Red Lion Controls Products are designed with a high degree of immunity to Electromagnetic Interference (EMI), proper installation and wiring methods must be followed to ensure compatibility in each application. The type of the electrical noise, source or coupling method into a unit may be different for various installations. Cable length, routing, and shield termination are very important and can mean the difference between a successful or troublesome installation. Listed are some EMI guidelines for a successful installation in an industrial environment.

1. A unit should be mounted in a metal enclosure, which is properly connected to protective earth.
2. Use shielded cables for all Signal and Control inputs. The shield connection should be made as short as possible. The connection point for the shield depends somewhat upon the application. Listed below are the recommended methods of connecting the shield, in order of their effectiveness.
 a. Connect the shield to earth ground (protective earth) at one end where the unit is mounted.
 b. Connect the shield to earth ground at both ends of the cable, usually when the noise source frequency is over 1 MHz.
3. Never run Signal or Control cables in the same conduit or raceway with AC power lines, conductors, feeding motors, solenoids, SCR controls, and heating coils. The cables should be run through metal conduit that is properly grounded. This is especially useful in applications where cable runs are long and portable two-way radios are used in close proximity or if the installation is near a commercial radio transmitter. Also, Signal or Control cables within an enclosure should be routed as far away as possible from contactors, control relays, transformers, and other noisy components.
4. Long cable runs are more susceptible to EMI pickup than short cable runs.
5. In extremely high EMI environments, the use of external EMI suppression devices such as Ferrite Suppression Cores for signal and control cables is effective. The following EMI suppression devices (or equivalent) are recommended:
 - Fair-Rite part number 0443167251 (RLC part number FCOR0000)
 - Line Filters for input power cables:
 - Schwaffer # FN2010-1/07 (Red Lion Controls # LFIL0000)
6. To protect relay contacts that control inductive loads and to minimize radiated and conducted noise (EMI), some type of contact protection network is normally installed across the load, the contacts or both. The most effective location is across the load.
 a. Using a snubber, which is a resistor-capacitor (RC) network or metal oxide varistor (MOV) across an AC inductive load is very effective at reducing EMI and increasing relay contact life.
 b. If a DC inductive load (such as a DC relay coil) is controlled by a transistor switch, care must be taken not to exceed the breakdown voltage of the transistor when the load is switched. One of the most effective ways is to place a diode across the inductive load. Most RLC products with solid state outputs have internal zener diode protection. However external diode protection at the load is always a good design practice to limit EMI. Although the use of a snubber or varistor could be used.
 - RLC part numbers: Snubber: SNUB0000
 - Varistor: ILS11500 or ILS23000
7. Care should be taken when connecting input and output devices to the instrument. When a separate input and output common is provided, they should not be mixed. Therefore a sensor common should NOT be connected to an output common. This would cause EMI on the sensitive input common, which could affect the instrument’s operation.

Visit RLC’s web site at http://www.redlion.net/emi for more information on EMI guidelines, Safety and CE issues as they relate to Red Lion Controls products.

WIRING OVERVIEW

Electrical connections are made via pluggable terminal blocks located inside the meter. All conductors should conform to the meter's voltage and current ratings. All cabling should conform to appropriate standards of good installation, local codes and regulations. It is recommended that the power supplied to the meter (DC or AC) be protected by a fuse or circuit breaker. When wiring the meter, compare the numbers on the label on the back of the meter case against those shown in wiring drawings for proper wire position. Strip the wire, leaving approximately 0.1" (10 mm) bare lead exposed (stranded wires should be timed with solder.) Insert the lead under the correct screw clamp terminal and tighten until the wire is secure. (Pull wire to verify tightness.) Each terminal can accept up to one #14 AWG (2.55 mm) wire, two #18 AWG (1.02 mm), or four #20 AWG (0.61 mm). Use copper conductors only, with insulation rated at 90°C.

WIRING CONNECTIONS

Internal removable terminal blocks are used for power and signal wiring. Access to terminal blocks is through conduit fittings. Remove end plates with ¼" nut driver. For LD4 versions, all wiring is on right side of unit. For LD2 versions, power and relay wiring is on the right side and the input, serial, DC out and user input is on the left side.

Feed the wire stripped end of cable(s) through the cord grip(s). Un-plug the internal removable terminal blocks and wire appropriately.

Plug in the terminal blocks, connect the drain wire from shielded cable(s) to the screw on the side plate for proper grounding, and slide the end plate(s) into place and tighten to case. Hand tighten all cap screws and then tighten the cap screws at the opposite corner diagonally.

Important: To maintain the Type 4X/IP65 specification, the cord grip must be tightened around a cable with an outside diameter of 0.181" (4.6 mm) to 0.312" (7.9 mm). If the cord grip is unused, remove it and replace with the LD cord grip plug (part # LDPLUG00). The LDPLUG00 must be ordered separately.
3.1 POWER WIRING

The power wiring is made via the 3 position terminal block (TBA) located inside the unit (right side). The DC out power is located: LD2 - left side, LD4 - right side

Power
Terminal 1: VAC/DC +
Terminal 2: VAC/DC -
Terminal 3: Protective Conductor

DC Out Power
Terminal 4: +24 VDC OUT
Terminal 6: User Common

3.2 INPUT WIRING

Before connecting signal wires, the Input Range Jumper should be verified for proper position.

CAUTION: Analog common is NOT isolated from user input common. In order to preserve the safety of the meter application, the DC common must be suitably isolated from hazardous live earth referenced voltage; or input common must be at protective earth ground potential. If not, hazardous voltage may be present at the User Input and Input Common terminals. Appropriate considerations must then be given to the potential of the input common with respect to earth ground. Always connect the analog signal common to terminal 2.

3.3 SETPOINT (OUTPUT) WIRING

The setpoint relays use a six position terminal block (TBB) located inside the right side.

Terminal 1: NC 1
Terminal 2: NO 2
Terminal 3: Relay 1 Common
Terminal 4: NC 1
Terminal 5: NO 2
Terminal 6: Relay 2 Common
3.4 SERIAL WIRING

The serial connections are made via terminal block TBD located inside the unit on the left side for the LD2 and on the right side for the LD4.

RS232 Communications

RS232 is intended to allow two devices to communicate over distances up to 50 feet. Data Terminal Equipment (DTE) transmits data on the Transmitted Data (TXD) line and receives data on the Received Data (RXD) line. Data Computer Equipment (DCE) receives data on the TXD line and transmits data on the RXD line. The LD emulates a DTE. If the other device connected to the meter also emulates a DTE, the TXD and RXD lines must be interchanged for communications to take place. This is known as a null modem connection. Most printers emulate a DCE device while most computers emulate a DTE device.

Some devices cannot accept more than two or three characters in succession without a pause in between. In these cases, the meter employs a busy function. As the meter begins to transmit data, the RXD line (RS232) is monitored to determine if the receiving device is “busy”. The receiving device asserts that it is busy by setting the RXD line to a space condition (logic 0). The meter then suspends transmission until the RXD line is released by the receiving device.

RS485 Communications

The RS485 communication standard allows the connection of up to 32 devices on a single pair of wires, distances up to 4,000 ft. and data rates as high as 10M baud (the LDA is limited to 38.4k baud). The same pair of wires is used to both transmit and receive data. RS485 is therefore always half-duplex, that is, data cannot be received and transmitted simultaneously.

4.0 REVIEWING THE FRONT BUTTONS AND DISPLAY

<table>
<thead>
<tr>
<th>BUTTON</th>
<th>DISPLAY MODE OPERATION</th>
<th>PROGRAMMING MODE OPERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAR</td>
<td>Access Programming Mode</td>
<td>Store selected parameter and index to next parameter</td>
</tr>
<tr>
<td>SEL▼</td>
<td>Index display through selected displays</td>
<td>Advance through selection list/select digit position in parameter value</td>
</tr>
<tr>
<td>RST▼</td>
<td>Resets display</td>
<td>Increment selected digit of parameter value</td>
</tr>
</tbody>
</table>

OPERATING MODE DISPLAY DESIGNATORS

MAX - Maximum display capture value
MIN - Minimum display capture value

1 - To the left of the display indicates setpoint 1 output activated.
2 - To the left of the display indicates setpoint 2 output activated.

Pressing the SEL▼ button toggles the meter through the selected displays. If display scroll is enabled, the display will toggle automatically every four seconds between the enabled display values.
5.0 PROGRAMMING THE METER

OVERVIEW

PROGRAMMING MENU

PROGRAMMING MODE ENTRY (PAR BUTTON)
It is recommended all programming changes be made off line, or before installation. The meter normally operates in the Display Mode. No parameters can be programmed in this mode. The Programming Mode is entered by pressing the PAR button. If it is not accessible, then it is locked by either a security code or a hardware lock.

MODULE ENTRY (SEL▲ & PAR BUTTONS)
The Programming Menu is organized into five modules. These modules group together parameters that are related in function. The display will alternate between Pro and the present module. The SEL▲ button is used to select the desired module. The displayed module is entered by pressing the PAR button.

MODULE MENU (PAR BUTTON)
Each module has a separate module menu (which is shown at the start of each module discussion). The PAR button is pressed to advance to a particular parameter to be changed, without changing the programming of preceding parameters. After completing a module, the display will return to Pro NO. Programming may continue by accessing additional modules.

SELECTION / VALUE ENTRY
For each parameter, the display alternates between the present parameter and the selections/value for that parameter. The SEL▲ and RST▼ buttons are used to move through the selections/values for that parameter. Pressing the PAR button, stores and activates the displayed selection/value. This also advances the meter to the next parameter.

PROGRAMMING TIPS
It is recommended to start with Module 1 and proceed through each module in sequence. When programming is complete, it is recommended to record the parameter programming and lock out parameter programming with the user input or programming security code.

FACTORY SETTINGS
Factory Settings may be completely restored in Module 2. This is useful when encountering programming problems.

ALTERNATING SELECTION DISPLAY
In the explanation of the modules, the following dual display with arrows will appear. This is used to illustrate the display alternating between the parameter on top and the parameter’s Factory Setting on the bottom. In most cases, selections and values for the parameter will be listed on the right.

5.1 MODULE 1 - SIGNAL INPUT PARAMETERS (1-INP)

PARAMETER MENU

INPUT RANGE

Select the input range that corresponds to the external signal. This selection should be high enough to avoid input signal overload but low enough for the desired input resolution. This selection and the position of the Input Range Jumper must match.

DISPLAY DECIMAL POINT

Select the decimal point location for the Input, MIN and MAX displays. This selection also affects the dS1 and dS2 parameters and setpoint values and offset value.

DISPLAY OFFSET VALUE

The display can be corrected with an offset value. This can be used to compensate for signal variations or sensor errors. This value is automatically
updated after a Zero Display to show how far the display is offset. A value of zero removes the effects of offset. The decimal point follows the \(\text{dECPt} \) selection.

FILTER SETTING

\[
\text{FILTER} \quad 0 \quad 1 \quad 2 \quad 3
\]

If the displayed value is difficult to read due to small process variations or noise, increased levels of filtering will help to stabilize the display. Software filtering effectively combines a fraction of the current input reading with a fraction of the previous displayed reading to generate the new display.

Filter values represent no filtering (0), up to heavy filtering (3). A value of 1 for the filter uses 1/4 of the new input and 3/4 of the previous display to generate the new display. A filter value of 2 uses 1/8 new and 7/8 previous. A filter value of 3 uses 1/16 new and 15/16 previous.

FILTER BAND

\[
\text{FILTER BAND} \quad 0 \quad \text{to} \quad 999
\]

The filter will adapt to variations in the input signal. When the variation exceeds the input filter band value, the filter disengages. When the variation becomes less than the band value, the filter engages again. This allows for a stable readout, but permits the display to settle rapidly after a large process change. The value of the band is in display units, independent of the Display Decimal Point position. A band setting of ‘0’ keeps the filter permanently engaged at the filter level selected above.

SCALING STYLE

\[
\text{SCALING STYLE} \quad \text{KEY} \quad \text{APLY}
\]

If Input Values and corresponding Display Values are known, the Key-in (\(\text{KEY} \)) scaling style can be used. This allows scaling without the presence or changing of the input signal. If Input Values have to be derived from the actual input signal source or simulator, the Apply (\(\text{APLY} \)) scaling style must be used.

INPUT VALUE FOR SCALING POINT 1

\[
\text{INPUT VALUE FOR SCALING POINT 1} \quad \text{INP} \quad 1 \quad \text{to} \quad 29999
\]

For Key-in (\(\text{KEY} \)) style, enter the first Input Value using the front panel buttons. (The Input Range selection sets the decimal location for the Input Value).

For Apply (\(\text{APLY} \)) style, the meter shows the previously stored Input Value. To retain this value, press the \(\text{SEL} \) button to advance to the next parameter. To change the Input Value, press the \(\text{RST} \) button and apply the input signal to the meter. Adjust the signal source externally until the desired Input Value appears. Press the \(\text{SEL} \) button to enter the value being displayed.

DISPLAY VALUE FOR SCALINGPOINT 1

\[
\text{DISPLAY VALUE FOR SCALINGPOINT 1} \quad \text{dSP} \quad 1 \quad \text{to} \quad 99999
\]

Enter the first Display Value by using the front panel buttons. This is the same for \(\text{KEY} \) and \(\text{APLY} \) scaling styles. The decimal point follows the \(\text{dECPt} \) selection.

INPUT VALUE FOR SCALING POINT 2

\[
\text{INPUT VALUE FOR SCALING POINT 2} \quad \text{INP} \quad 2 \quad \text{to} \quad 29999
\]

For Key-in (\(\text{KEY} \)) style, enter the known second Input Value using the front panel buttons.

For Apply (\(\text{APLY} \)) style, the meter shows the previously stored Input Value for Scaling Point 2. To retain this value, press the \(\text{SEL} \) button to advance to the next parameter. To change the Input Value, press the \(\text{RST} \) button and apply the input signal to the meter. Adjust the signal source externally until the desired Input Value appears. Press the \(\text{SEL} \) button to enter the value being displayed.

DISPLAY VALUE FOR SCALING POINT 2

\[
\text{DISPLAY VALUE FOR SCALING POINT 2} \quad \text{dSP} \quad 2 \quad \text{to} \quad 99999
\]

For Key-in (\(\text{KEY} \)) style, enter the first Input Value using the front panel buttons. This is the same for \(\text{KEY} \) and \(\text{APLY} \) scaling styles. The decimal point follows the \(\text{dECPt} \) selection.

USER INPUT FUNCTION

USER INPUT FUNCTION

DISPLAY MODE

- **NO**: No Function
- **P-Loc**: Program Mode Lock-out
- **zEn**: Zero Input (Edge triggered)
- **rESel**: Reset (Edge triggered)
- **d-HLd**: Display Hold
- **d-SEL**: Display Select (Edge triggered)
- **d-LEU**: Display Intensity Level (Edge Triggered)
- **Pr rQ**: Print Request
- **P-rSt**: Print and Reset
- **rSt-1**: Setpoint 1 Reset
- **rSt-2**: Setpoint 2 Reset
- **rSt-12**: Setpoint 1 and 2 Reset

DESCRIPTION

- **User Input disabled.**
- **See Programming Mode Access chart (Module 5).**
- **Zero the Input Display Value causing Display Reading to be Offset.**
- **Resets the assigned value(s) to the current input value.**
- **Holds the assigned display, but all other meter functions continue as long as activated (maintained action).**
- **Advance once for each activation.**
- **Increase intensity one level for each activation.**
- **Serial transmit of the active parameters selected in the Print Options menu (Module 5).**
- **Same as Print Request followed by a momentary reset of the assigned value(s).**
- **Resets setpoint 1 output.**
- **Resets setpoint 2 output.**
- **Reset both setpoint 1 and 2 outputs.**

USER INPUT ASSIGNMENT

\[
\text{USER INPUT ASSIGNMENT} \quad \text{U-ASN} \quad \text{H} \quad \text{L}
\]

Select the value(s) to which the User Input Function is assigned. The User Input Assignment only applies if a selection of reset, display hold, or print and reset is selected in the User Input Function menu.

USER INPUT ACTIVE LEVEL

\[
\text{USER INPUT ACTIVE LEVEL} \quad \text{U-Act} \quad \text{H} \quad \text{L}
\]

Select whether the user input is configured as active low or active high.
5.2 MODULE 2 - SECONDARY FUNCTION PARAMETERS (2-SEC)

MAX DISPLAY ENABLE

Enables the Maximum Display Capture capability.

MAX CAPTURE DELAY TIME

When the Input Display is above the present MAX value for the entered delay time, the meter will capture that display value as the new MAX reading. A delay time helps to avoid false captures of sudden short spikes.

MIN DISPLAY ENABLE

Enables the Minimum Display Capture capability.

MIN CAPTURE DELAY TIME

When the Input Display is below the present MIN value for the entered delay time, the meter will capture that display value as the new MIN reading. A delay time helps to avoid false captures of sudden short spikes.

FACTORY SERVICE OPERATIONS

Select YES to perform either of the Factory Service Operations shown below.

RESTORE FACTORY DEFAULT SETTINGS

Entering Code 66 will overwrite all user settings with the factory settings. The meter will display "RES" and then return to Code 00. Press the PAR button to exit the module.

VIEW MODEL AND VERSION DISPLAY

Entering Code 50 will display the model (LDA) and version (x.x) of the meter. The display then returns to Code 00. Press the PAR button to exit the module.

CALIBRATION

The LD uses stored calibration values to provide accurate measurements. Over time, the electrical characteristics of the components inside the LD will slowly change with the result that the stored calibration values no longer accurately define the input circuit. For most applications, recalibration every 1 to 2 years should be sufficient.

Calibration of the LD involves a calibration which should only be performed by individuals experienced in calibrating electronic equipment. Allow 30 minute warm up before performing any calibration related procedure. The following procedures should be performed at an ambient temperature of 15 to 35 °C (59 to 95 °F).

CAUTION: The accuracy of the calibration equipment will directly affect the accuracy of the LD.

Current Calibration

1. Connect the negative lead of a precision DC current source with an accuracy of 0.01% or better to the COMM terminal. Leave the positive lead of the DC current source unconnected.
2. With the display at Code 48, press the PAR button. Unit will display "CAL NO"
3. Press the RST button to select the range to be calibrated.
4. Press the PAR button. Display reads "CALC" for about 8 seconds.
5. When the display reads the selected range, apply full-scale input signal for the range. (Note: For 200 mA range, apply 100 mA as indicated on the display.) Press PAR. Display reads "CALC" for about 8 seconds.
6. Repeat steps 3 through 6 for each input range to be calibrated. When display reads "CAL NO", press the PAR button to exit calibration.

Voltage Calibration

1. Connect a precision DC voltage source with an accuracy of 0.01% or better to the volt input and COMM terminals of the LD. Set the output of the voltage source to zero.
2. With the display at Code 48, press the PAR button. Unit will display "CAL NO"
3. Press the RST button to select the range to be calibrated.
4. Press the PAR button. Display reads "CALC" for about 8 seconds.
5. With the positive lead of the DC current source connected, press PAR. Display reads "CALC" for about 8 seconds.
6. When the display reads the selected range, connect the positive lead of the DC current source to the current input and apply full-scale input signal for the range. (Note: For 200V range, apply 200V as indicated on the display.) Press PAR. Display reads "CALC" for about 8 seconds.
7. Repeat steps 3 through 6 for each input range to be calibrated. When display reads "CALC", press the PAR button to exit calibration.
5.3 MODULE 3 - DISPLAY AND FRONT PANEL BUTTON PARAMETERS (3-dSP)

DISPLAY UPDATE TIME

![dSP-t](image)

This parameter sets the display update time in seconds.

FRONT PANEL DISPLAY SELECT ENABLE (SEL)

![SEL](image)

The YES selection allows the SEL button to toggle through the enabled displays.

FRONT PANEL RESET ENABLE (RST)

![rSt](image)

This selection allows the RST button to reset the selected value(s).

ZERO DISPLAY WITH DISPLAY RESET

![Zero](image)

This parameter enables the RST button or user input to zero the input display value, causing the display reading to be offset.

Note: For this parameter to operate, the RST button or User Input being used must be set to dSP and the Input value must be displayed. If these conditions are not met, the display will not zero.

DISPLAY SCROLL ENABLE

![Scrol](image)

The YES selection allows the display to automatically scroll through the enabled displays. The scroll rate is every 4 seconds. This parameter only appears when the MAX or MIN displays are enabled.

DISPLAY INTENSITY LEVEL

![d-LEU](image)

Enter the desired Display Intensity Level (1-5). The display will actively dim or brighten as levels are changed.

PARAMETER MENU

- **dSP-t**: Display Update Time
- **SEL**: Front Panel Display Select Enable
- **rSt**: Front Panel Reset Enable
- **Zero**: Zero Display W/Display Reset
- **Scrol**: Display Scroll Enable
- **d-LEU**: Display Intensity Level
- **CodE**: Programming Security Code

DISPLAY UPDATE TIME

dSP-t 0.1 2 seconds

This parameter sets the display update time in seconds.

FRONT PANEL DISPLAY SELECT ENABLE (SEL)

SEL YES

The YES selection allows the SEL button to toggle through the enabled displays.

FRONT PANEL RESET ENABLE (RST)

rSt NO LO dSP

This selection allows the RST button to reset the selected value(s).

ZERO DISPLAY WITH DISPLAY RESET

Zero YES NO

This parameter enables the RST button or user input to zero the input display value, causing the display reading to be offset.

Note: For this parameter to operate, the RST button or User Input being used must be set to dSP and the Input value must be displayed. If these conditions are not met, the display will not zero.

DISPLAY SCROLL ENABLE

Scrol YES NO

The YES selection allows the display to automatically scroll through the enabled displays. The scroll rate is every 4 seconds. This parameter only appears when the MAX or MIN displays are enabled.

DISPLAY INTENSITY LEVEL

d-LEU 1 to 5

Enter the desired Display Intensity Level (1-5). The display will actively dim or brighten as levels are changed.

PROGRAMMING SECURITY CODE

CodE 000 to 999

The Security Code determines the programming mode and the accessibility of programming parameters. This code can be used along with the Program Mode Lock-out (P-Loc) in the User Input Function parameter (Module 1).

Two programming modes are available. Full Programming mode allows all parameters to be viewed and modified. Quick Programming mode permits only the Setpoint values to be modified, but allows direct access to these values without having to enter Full Programming mode.

Programming a Security Code other than 0, requires this code to be entered at the CodE prompt in order to access Full Programming mode. Depending on the code value, Quick Programming may be accessible before the CodE prompt appears (see chart).

<table>
<thead>
<tr>
<th>USER INPUT FUNCTION</th>
<th>USER INPUT STATE</th>
<th>SECURITY CODE</th>
<th>MODE WHEN “SEL” BUTTON IS PRESSED</th>
<th>FULL PROGRAMMING MODE ACCESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>not P-Loc</td>
<td></td>
<td>0</td>
<td>Full Programming</td>
<td>Immediate Access</td>
</tr>
<tr>
<td>1-99</td>
<td></td>
<td>Quick Programming</td>
<td>After Quick Programming</td>
<td></td>
</tr>
<tr>
<td>100-999</td>
<td></td>
<td>CodE prompt</td>
<td>With correct code entry at CodE prompt</td>
<td></td>
</tr>
<tr>
<td>P-Loc Active</td>
<td></td>
<td>0</td>
<td>Programming Lock</td>
<td>No Access</td>
</tr>
<tr>
<td>1-99</td>
<td></td>
<td>Quick Programming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-999</td>
<td></td>
<td>CodE prompt</td>
<td>With correct code entry at CodE prompt</td>
<td></td>
</tr>
<tr>
<td>Not Active 0-999</td>
<td></td>
<td>Full Programming</td>
<td></td>
<td>Immediate Access</td>
</tr>
</tbody>
</table>
5.4 MODULE 4 - SETPOINT OUTPUT PARAMETERS (4-SPt)

PARAMETER MENU

SETPOINT SELECT

Enter the setpoint (output) to be programmed. The n in the following parameters will reflect the chosen setpoint number. After the chosen setpoint is completely programmed, the display will return to SPSEL. Repeat steps for each setpoint to be programmed. Select NO to exit the module.

SETPOINT ENABLE

Select YES to enable Setpoint n and access the setup parameters. If NO is selected, the unit returns to SPSEL and Setpoint n is disabled.

SETPOINT ACTION

Enter the action for the selected setpoint (output). See Setpoint Output Figures for a visual detail of each action.

- **HI-bL**: High Acting, with balanced hysteresis
- **LO-bL**: Low Acting, with balanced hysteresis
- **HI-Ub**: High Acting, with unbalanced hysteresis
- **LO-Ub**: Low Acting, with unbalanced hysteresis

ON TIME DELAY

Enter the time value in seconds that the output is delayed from turning on after the trigger point is reached. A value of 0.0 allows the meter to update the output status per the response time listed in the Specifications.

OFF TIME DELAY

Enter the time value in seconds that the output is delayed from turning off after the trigger point is reached. A value of 0.0 allows the meter to update the output status per the response time listed in the Specifications.

OUTPUT RESET ACTION

Enter the reset action of the output. See figure for details.

- **Auto**: Automatic action; This action allows the output to automatically reset off at the trigger points per the Setpoint Action shown in Setpoint Output Figures. The “on” output may be manually reset (off) immediately by the front panel RST button or user input. The output remains off until the trigger point is crossed again.
- **Latching with immediate reset action**: This action latches the output on at the trigger point per the Setpoint Action shown in Setpoint Output Figures. Latch means that the output can only be turned off by the front panel RST button or user input manual reset, serial reset command or meter power cycle. When the user input or RST button is activated (momentary action), the...
corresponding "on" output is reset immediately and remains off until the trigger point is crossed again. (Previously latched alarms will be off if power up Display Value is lower than setpoint value.)

\(l \cdot \text{d} \cdot \text{y} = \) Latch with delay reset action; This action latches the output on at the trigger point per the Setpoint Action shown in Setpoint Output Figures. Latch means that the output can only be turned off by the front panel \(\text{RST} \) button or user input manual reset, serial reset command or meter power cycle. When the user input or \(\text{RST} \) button is activated (momentary action), the meter delays the event until the corresponding "on" output crosses the trigger off point. (Previously latched outputs are off if power up Display Value is lower than setpoint value. During a power cycle, the erases a previous \(l \cdot \text{d} \cdot \text{y} \) reset if it is not activated at power up.)

\[\text{SP} - \text{Hys} \quad \text{MANUAL RESET} \quad \text{Hys} \]

\[\{ \text{OFF ON OFF ON OFF (} R \text{R} \text{)} \}
\[\{ \text{OFF ON OFF ON OFF (} L \text{R} \text{)} \}
\[\{ \text{OFF ON OFF ON OFF (} \text{l} \cdot \text{d} \cdot \text{y} \text{)} \}

\text{OUTPUT RESET WITH DISPLAY RESET}

\[\text{En} \cdot \text{n} \]

\[\text{No} \quad \text{Yes} \]

This parameter enables the \(\text{RST} \) button or user input to reset the output when the display is reset.

Note: For this parameter to operate, the \(\text{RST} \) button or User Input being used must be set to \(\text{dSP} \) and the Input value must be displayed. If these conditions are not met, the output will not reset.

\text{STANDBY OPERATION}

\[\text{Sb} \cdot \text{n} \]

\[\text{No} \quad \text{Yes} \]

When Yes, the output is disabled (after a power up) until the trigger point is crossed. Once the output is on, the output operates normally per the Setpoint Action and Output Reset Action.

\section*{5.5 Module 5 - Serial Setup Parameters (5-SEr)}

\textbf{PARAMETER MENU}

\begin{tabular}{|c|c|c|c|c|}
\hline
\text{PAR} & \text{bRud} & \text{dRLR} & \text{PRr} & \text{Addr} \tabularnewline
\hline
\text{Baud Rate} & \text{Data Bit} & \text{Parity Bit} & \text{Meter Address} & \text{Abbreviated Printing} \tabularnewline
\hline
\text{OPT} & \text{Print Options} & \\
\hline
\end{tabular}

Module 5 is the programming module for the Serial Communications Parameters. These parameters are used to match the serial settings of the LD with those of the host computer or other serial device.

\subsection*{BAUD RATE}

\[\text{bRuD} \]

\[\begin{array}{c}
\text{9600} \\
\text{1200} \\
\text{2400} \\
\text{4800} \\
\text{9600} \\
\text{19200} \\
\end{array} \]

Set the baud rate to match that of other serial communications equipment. Normally, the baud rate is set to the highest value that all of the serial communications equipment is capable of transmitting and receiving.

\subsection*{DATA BIT}

\[\text{dRLR} \]

\[\begin{array}{c}
1 \cdot b \cdot k \\
8 \cdot b \cdot k \\
\end{array} \]

Select either 7- or 8-bit data word length. Set the word length to match the other serial communications equipment on the serial link.

\subsection*{PARITY BIT}

\[\text{PRr} \]

\[\begin{array}{c}
\text{No} \\
\text{Odd} \\
\text{Even} \\
\end{array} \]

This parameter only appears when the Data Bit parameter is set to a 7-bit data word length. Set the parity bit to match that of the other serial equipment on the serial link. The meter ignores parity when receiving data and sets the parity bit for outgoing data. If parity is set to No, an additional stop bit is used to force the frame size to 10 bits.
Sending Serial Commands and Data

When sending commands to the meter, a string containing at least one command character, a value identifier, numerical data (if writing data to the meter) followed by a command terminator character, * or $.

Command Chart

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Node (meter) Address Specifier</td>
<td>Address a specific meter. Must be followed by one or two digit node address. Not required when node address = 0.</td>
</tr>
<tr>
<td>T</td>
<td>Transmit Value (read)</td>
<td>Read a register from the meter. Must be followed by a register ID character and numeric data.</td>
</tr>
<tr>
<td>V</td>
<td>Value Change (write)</td>
<td>Write to register of the meter. Must be followed by a register ID character and numeric data.</td>
</tr>
<tr>
<td>R</td>
<td>Reset</td>
<td>Reset a min or max value or the output. Must be followed by a register ID character.</td>
</tr>
<tr>
<td>P</td>
<td>Block Print Request (read)</td>
<td>Initiates a block print output. Registers in the print block are selected in Print Options.</td>
</tr>
</tbody>
</table>

Command String Construction

The command string must be constructed in a specific sequence. The meter does not respond with an error message to illegal commands. The following procedure details construction of a command string:

1. The first 2 or 3 characters consist of the Node Address Specifier (N) followed by a 1 or 2 character node address number. The node address number of the meter is programmable. If the node address is 0, this command and the node address itself may be omitted. This is the only command that may be used in conjunction with other commands.
2. After the optional address specifier, the next character is the command character.
3. The next character is the register ID. This identifies the register that the command affects. The P command does not require a register ID character. It prints all the active selections chosen in the Print Options menu parameter.
4. If constructing a value change command (writing data), the numeric data is sent next.
5. All command strings must be terminated with the string termination characters * or $. The meter does not begin processing the command string until this character is received. See timing diagram figure.
Receiving Data From The Meter

Data is transmitted from the meter in response to either a transmit command (T), a block print request command (P) or a User Input print request. The response from the meter is either a full field transmission or an abbreviated transmission, depending on the selection chosen in Module 5.

Full Field Transmission

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>2 byte Node Address field [00-99]</td>
</tr>
<tr>
<td>3</td>
<td><SP> (Space)</td>
</tr>
<tr>
<td>4-15</td>
<td>3 byte Register Mnemonic field</td>
</tr>
<tr>
<td>16</td>
<td><CR> (carriage return)</td>
</tr>
<tr>
<td>17</td>
<td><LF> (line feed)</td>
</tr>
<tr>
<td>18</td>
<td><SP>* (Space)</td>
</tr>
<tr>
<td>19</td>
<td><CR>* (carriage return)</td>
</tr>
<tr>
<td>20</td>
<td><LF>* (line feed)</td>
</tr>
</tbody>
</table>

* These characters only appear in the last line of a block print.

The first two characters transmitted are the meter address. If the address assigned is 0, two spaces are substituted. A space follows the meter address field. The next three characters are the register mnemonic, as shown in the Register Identification Chart.

The numeric data is transmitted next. The numeric field (bytes 7 to 15) is 9 characters long. This field consists of a minus sign (for negative values), a floating decimal point (if applicable), and five positions for the requested value. The data within bytes 9 to 15 is right-aligned with leading spaces for any unfilled positions. When a requested value exceeds the meter’s display limits, decimal points are transmitted instead of a numeric value.

The end of the response string is terminated with a <CR> and <LF>. After the last line of a block print, an extra <SP>, <CR> and <LF> are added to provide separation between the print blocks.

Abbreviated Transmission

<table>
<thead>
<tr>
<th>Byte</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-9</td>
<td>9 byte data field, 7 bytes for number, one byte for sign, one byte for decimal point</td>
</tr>
<tr>
<td>10</td>
<td><CR> (carriage return)</td>
</tr>
<tr>
<td>11</td>
<td><LF> (line feed)</td>
</tr>
<tr>
<td>12</td>
<td><SP>* (Space)</td>
</tr>
<tr>
<td>13</td>
<td><CR>* (carriage return)</td>
</tr>
<tr>
<td>14</td>
<td><LF>* (line feed)</td>
</tr>
</tbody>
</table>

* These characters only appear in the last line of a block print.

The abbreviated response suppresses the node address and register ID, leaving only the numeric part of the response.

Meter Response Examples:
1. Node address = 17, full field response, Input = 875
 17 INP 875 <CR><LF>
2. Node address = 0, full field response, Setpoint 1 = -250.5
 SP1 -250.5<CR><LF>
3. Node address = 0, abbreviated response, Setpoint 2 = 250, last line of block print
 250<CR><LF><SP><CR><LF>

Command Response Time

The meter can only receive data or transmit data at any one time (half-duplex operation). During RS232 transmissions, the meter ignores commands while transmitting data, but instead uses RXD as a busy signal. When sending commands and data to the meter, a delay must be imposed before sending another command. This allows enough time for the meter to process the command and prepare for the next command.

At the start of the time interval t_1, the computer program prints or writes the string to the com port, thus initiating a transmission. During t_1, the command characters are under transmission and at the end of this period, the command terminating character (* or $) is received by the meter. The time duration of t_1 is dependent on the number of characters and baud rate of the channel.

\[t_1 = \frac{10 \times \text{# of characters}}{\text{baud rate}} \]

At the start of time interval t_2, the meter starts the interpretation of the command and when complete, performs the command function. This time interval t_2 varies. If no response from the meter is expected, the meter is ready to accept another command.

If the meter is to reply with data, the time interval t_2 is controlled by the use of the command terminating character. The '*' terminating character results in a response time of 50 msec. minimum. This allows sufficient time for the release of the sending driver on the RS485 bus. Terminating the command line with '$' results in a response time (t_2) of 2 msec. minimum. The faster response time of this terminating character requires that sending drivers release within 2 msec. after the terminating character is received.

At the beginning of time interval t_3, the meter responds with the first character of the reply. As with t_1, the time duration of t_3 is dependent on the number of characters and baud rate of the channel. At the end of t_3, the meter is ready to receive the next command.

\[t_3 = \frac{10 \times \text{# of characters}}{\text{baud rate}} \]

The maximum serial throughput of the meter is limited to the sum of the times t_1, t_2 and t_3.

[Diagrams of Command String Transmission and Meter Response Time]
Communication Format

Data is transferred from the meter through a serial communication channel. In serial communications, the voltage is switched between a high and low level at a predetermined rate (baud rate) using ASCII encoding. The receiving device reads the voltage levels at the same intervals and then translates the switched levels back to a character. The voltage level conventions depend on the interface standard. The table lists the voltage levels for each standard.

<table>
<thead>
<tr>
<th>LOGIC</th>
<th>INTERFACE STATE</th>
<th>RS232*</th>
<th>RS485*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>mark (idle)</td>
<td>TXD,RXD; -3 to -15 V</td>
<td>a-b < -200 mV</td>
</tr>
<tr>
<td>0</td>
<td>space (active)</td>
<td>TXD,RXD; +3 to +15 V</td>
<td>a-b > +200 mV</td>
</tr>
</tbody>
</table>

* Voltage levels at the Receiver

Data is transmitted one byte at a time with a variable idle period between characters (0 to ∞). Each ASCII character is “framed” with a beginning start bit, an optional parity bit and one or more ending stop bits. The data format and baud rate must match that of other equipment in order for communication to take place. The figures list the data formats employed by the meter.

Start Bit and Data Bits

Data transmission always begins with the start bit. The start bit signals the receiving device to prepare for reception of data. One bit period later, the least significant bit of the ASCII encoded character is transmitted, followed by the remaining data bits. The receiving device then reads each bit position as they are transmitted.

Parity Bit

After the data bits, the parity bit is sent. The transmitter sets the parity bit to a zero or a one, so that the total number of ones contained in the transmission (including the parity bit) is either even or odd. This bit is used by the receiver to detect errors that may occur to an odd number of bits in the transmission. However, a single parity bit cannot detect errors that may occur to an even number of bits. Given this limitation, the parity bit is often ignored by the receiving device. The meter ignores the parity bit of incoming data and sets the parity bit to odd, even or none (mark parity) for outgoing data.

Stop Bit

The last character transmitted is the stop bit. The stop bit provides a single bit period pause to allow the receiver to prepare to re-synchronize to the start of a new transmission (start bit of next byte). The receiver then continuously looks for the occurrence of the start bit. If 7 data bits and no parity is selected, then 2 stop bits are sent from the meter.
Press PAR key to enter Programming Mode.
LIMITED WARRANTY

(a) Red Lion Controls Inc., Sixnet Inc., N-Tron Corporation, or Blue Tree Wireless Data, Inc. (the “Company”) warrants that all Products shall be free from defects in material and workmanship under normal use for the period of time provided in “Statement of Warranty Periods” (available at www.redlion.net) current at the time of shipment of the Products (the “Warranty Period”).

EXCEPT FOR THE ABOVE-STATED WARRANTY, COMPANY MAKES NO WARRANTY WHATSOEVER WITH RESPECT TO THE PRODUCTS, INCLUDING ANY (A) WARRANTY OF MERCHANTABILITY; (B) WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE; OR (C) WARRANTY AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF A THIRD PARTY; WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE. Customer shall be responsible for determining that a Product is suitable for Customer’s use and that such use complies with any applicable local, state or federal law.

(b) The Company shall not be liable for a breach of the warranty set forth in paragraph (a) if (i) the defect is a result of Customer’s failure to store, install, commission or maintain the Product according to specifications; (ii) Customer alters or repairs such Product without the prior written consent of Company.

(c) Subject to paragraph (b), with respect to any such Product during the Warranty Period, Company shall, in its sole discretion, either (i) repair or replace the Product; or (ii) credit or refund the price of Product provided that, if Company so requests, Customer shall, at Company’s expense, return such Product to Company.

(d) THE REMEDIES SET FORTH IN PARAGRAPH (c) SHALL BE THE CUSTOMER’S SOLE AND EXCLUSIVE REMEDY AND COMPANY’S ENTIRE LIABILITY FOR ANY BREACH OF THE LIMITED WARRANTY SET FORTH IN PARAGRAPH (a).