

©2003-2020 Red Lion Controls, Inc. All rights reserved. Red Lion, the Red Lion logo, Crimson

and the Crimson logo are registered trademarks of Red Lion Controls, Inc. All other company and

product names are trademarks of their respective owners.

Software supplied with each Red Lion® product remains the exclusive property of Red Lion. Red

Lion grants with each unit a perpetual license to use this software with the express limitations

that the software may not be copied or used in any other product for any purpose. It may not be

reverse engineered, or used for any other purpose other than in and with the computer

hardware sold by Red Lion.

Red Lion Controls, Inc.

20 Willow Springs Circle

York, PA 17406

Inside US: +1 (877) 432-9908

Outside US: +1 (717) 767-6511

Hours: 8 am-6 pm Eastern Standard Time

(UTC/GMT -5 hours)

Shanghai, P.R. China: +86 21-6113-3688 x767

Hours: 9 am-6 pm China Standard Time

(UTC/GMT +8 hours)

Netherlands: +31 33-4723-225

France: +33 (0) 1 84 88 75 25

Germany: +49 (0) 1 89 5795-9421

UK: +44 (0) 20 3868 0909

Hours: 9 am-5 pm Central European Time

(UTC/GMT +1 hour)

Website: www.redlion.net

Support: support.redlion.net

support.redlion.net

Drawing No. LP1045 Table of Contents

Revision E

Reference Guide i

Table of Contents Drawing No. LP1045

 Revision E

 ii Reference Guide

Drawing No. LP1045 Table of Contents

Revision E

Reference Guide iii

Table of Contents Drawing No. LP1045

 Revision E

 iv Reference Guide

Drawing No. LP1045 Table of Contents

Revision E

Reference Guide v

Table of Contents Drawing No. LP1045

 Revision E

 vi Reference Guide

Drawing No. LP1045 Table of Contents

Revision E

Reference Guide vii

Table of Contents Drawing No. LP1045

 Revision E

 viii Reference Guide

Drawing No. LP1045 Preface

Revision E Disclaimer

Reference Guide 1

While every effort has been made to ensure that this document is complete and accurate at the time of
release, the information that it contains is subject to change. Red Lion Controls, Inc. is not responsible for
any additions to or alterations of the original document. Industrial networks vary widely in their
configurations, topologies, and traffic conditions. This document is intended as a general guide only. It has
not been tested for all possible applications, and it may not be complete or accurate for some situations.

This guide is intended to be used by personnel responsible for configuring and commissioning Crimson
devices for use in visualization, monitoring and control applications. Users of this document are urged to
heed warnings and cautions used throughout the document.

Red Lion Controls, Inc. acknowledges and recognizes ownership of the following trademarked terms
used in this document.

 EtherNet/IP™and CIP™ are trademarks of ODVA.

 Microsoft®, Windows®, Windows NT®, and Windows Vista™ are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

All other company and product names are trademarks of their respective owners.

The hard copy and electronic media versions of this document are revised only at major releases and
therefore, may not always contain the latest product information. Documentation Notes and/or Product
Bulletins will be provided as needed between major releases to describe any new information or
document changes.

The latest online version of this document can be accessed through the Red Lion website at
https://www.redlion.net/red-lion-software/crimson/crimson-31.

Additional product information can be obtained by contacting your local sales representative or Red
Lion through the contact numbers and/or support e-mail address listed on the inside of the front cover.

Preface Drawing No. LP1045

Document History and Related Publications Revision E

 2 Reference Guide

Drawing No. LP1045 Chapter 1 Introduction

Revision E Supported Devices

Reference Guide 3

Crimson® 3.1 is the latest version of Red Lion’s widely-acclaimed Crimson device configuration
software. This Reference Guide augments the Crimson 3.1 Software Guide by detailing the Standard
Functions and System Variables available within Crimson 3.1. These features help Crimson 3.1 users
design powerful and attractive Crimson device solutions more easily and efficiently.

Crimson 3.1 supports only those Red Lion products that have the memory capacity and processor
performance necessary to implement the additional features that the software provides. This means that
while the Graphite family of Human Machine Interfaces (HMIs) and controllers can be configured with
Crimson 3.1, the G3 HMI and G3 Kadet families are not supported. It is our expectation that you will
migrate your G3 HMI and Kadet applications to the new CR3000 and CR1000 series, respectively.

Additionally, the currently available versions of our Data Station Plus, Modular Controller, and
ProducTVity Station products are likewise not supported by Crimson 3.1; use Crimson 3.0 to configure
these devices until updated versions become available.

Crimson 3.1 is designed to run on any version of Microsoft Windows, from Windows 7 onwards.
Memory requirements are modest and any system that meets the minimum system requirements for its
operating system will be able to run Crimson 3.1. About 600MB of free disk space will be needed for
installation, and you should ideally have a display with sufficient resolution to allow the editing of display
pages without having to scroll.

If you have an Internet connection, you can use the Check for Update command in the Help menu to
scan Red Lion’s website for a new version of Crimson 3.1. If a later version than the one you are using is
found, Crimson will ask if it should download the upgrade and update your software automatically. You
may also manually download the upgrade from the Red Lion website by visiting the Downloads page
within the Support section.

If you experience a problem or need assistance, the following resources are available.

Technical assistance is available on the web at: support.redlion.net
You may also call:
Inside US: +1 (877) 432-9908
Outside US: +1 (717) 767-6511

A number of online forums exist to support users of PLCs and HMIs. Red Lion recommends the Q&A
forum at http://www.plctalk.net/qanda/. The discussion board is populated by many experts who are
willing to help, and Red Lion’s own technical support staff monitors this forum for questions relating to
our products.

support.redlion.net

Chapter 1 Introduction Drawing No. LP1045

Getting Assistance Revision E

 4 Reference Guide

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E Abs(value)

Reference Guide 5

This chapter describes the standard functions that are provided in Crimson 3.1. These functions can be
invoked within programs, actions, or expressions, as described in the Crimson 3.1 Software Guide.
Functions that are marked as active may not be used in expressions that are not allowed to change values,
such as in the controlling expression of a display primitive. Functions that are marked as passive may be
used in any context.

Chapter 2 Standard Functions Drawing No. LP1045

Abs(value) Revision E

 6 Reference Guide

ARGUMENT TYPE DESCRIPTION

value int / float The value to be processed.

Returns the absolute value of the argument. In other words, if value is a positive value, that value will be
returned; if value is a negative value, a value of the same magnitude but with the opposite sign will be
returned.

This function is passive.

int or float, depending on the type of the value argument.

Error = abs(PV – SP)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E AbsR64(result, tag)

Reference Guide 7

ARGUMENT TYPE DESCRIPTION

result int The result

tag int The tag for which to compute the absolute value.

Calculates the absolute value of tag using 64-bit (double precision) floating point math and stores the
result in result. The input operand tag should be obtained from one of the 64-bit conversion functions
provided or from a driver that can read double precision values. All arguments to this function must be
integer arrays with lengths of 2. An in-depth example is provided in the entry for AddR64.

This function is active.

void

AbsR64(result[0], tag[0])

Chapter 2 Standard Functions Drawing No. LP1045

acos(value) Revision E

 8 Reference Guide

ARGUMENT TYPE DESCRIPTION

value float The value to be processed.

Returns the angle theta in radians such that cos(theta) is equal to value.

This function is passive.

float

theta = acos(1.0)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E acosR64(result, tag)

Reference Guide 9

ARGUMENT TYPE DESCRIPTION

result int The result.

tag int The value to be processed.

Calculates the arc-cosine of tag using 64-bit double precision floating point math and stores the result
in result. The input operand tag should be obtained from one of the 64-bit conversion functions
provided or from a driver that can read double precision values. All arguments to this function must be
integer arrays with lengths of 2. An in-depth example is provided in the entry for AddR64.

This function is active.

void

acosR64(result[0], tag[0])

Chapter 2 Standard Functions Drawing No. LP1045

AddR64(result, tag1, tag2) Revision E

 10 Reference Guide

ARGUMENT TYPE DESCRIPTION

result int The result.

tag1 int The first addend tag.

tag2 int The second addend tag.

Calculates the value of tag1 plus tag2 using 64-bit double precision floating point math and stores the
result in result. The input operands tag1 and tag2 should be obtained from one of the 64-bit
conversion functions provided or from a driver that can read double precision values. The value of
result can be used for further 64-bit calculations or formatted for display as a string using the
AsTextR64 function.

This function is active.

void

This example shows how to calculate π + 2 using 64-bit math.
Operand1, Operand2 and Result are integer array tags, each with an extent of 2.

int NumberTwo = 2;

cstring PiString = "3.14159265358979";

IntToR64(Operand1[0], NumberTwo);

TextToR64(PiString, Operand2[0]);

AddR64(Result[0], Operand1[0], Operand2[0]);

cstring PiPlusTwo = AsTextR64(Result[0]);

PiPlusTwo now contains "5.141592654", this being π + 2 represented as a string.

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E AddU32 (tag1, tag2)

Reference Guide 11

ARGUMENT TYPE DESCRIPTION

tag1 int The first addend tag.

tag2 int The second addend tag.

Returns the value of tag1 plus tag2 in an unsigned context.

This function is passive.

int

Result = AddU32(tag1, tag2)

Chapter 2 Standard Functions Drawing No. LP1045

AlarmAccept(alarm) Revision E

 12 Reference Guide

ARGUMENT TYPE DESCRIPTION

alarm int A value encoding the alarm to be accepted.

This function is not implemented in the current build.

This function is active.

This function does not return a value.

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E AlarmAcceptAll()

Reference Guide 13

ARGUMENT TYPE DESCRIPTION

none

Accepts all active alarms.

This function is passive.

This function does not return a value.

AlarmAcceptAll()

Chapter 2 Standard Functions Drawing No. LP1045

AlarmAcceptEx(source, method, code) Revision E

 14 Reference Guide

ARGUMENT TYPE DESCRIPTION

source int The source of the alarm.

method int The acceptance method.

code int The acceptance code.

Accepts an alarm that has been signaled by a rich communications driver that is itself capable of
generating alarms and events. This functionality is not used by any drivers that are currently included with
Crimson 3.1.

This function is active.

This function does not return a value.

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E AlarmAcceptTag(tag, index, event)

Reference Guide 15

ARGUMENT TYPE DESCRIPTION

tag int The index of the tag for which the alarm is defined.

index int The relevant element of an array tag, or zero otherwise.

event int Either 1 or 2, depending on the alarm to be accepted.

Accepts an alarm generated by a tag. The arguments indicate the tag number and the alarm number,
and may optionally indicate an array element. When accepting alarm on tags that are not arrays, set the
element number to zero.

This function is active.

This function does not return a value.

AlarmAcceptTag(10, 0, 1)

Chapter 2 Standard Functions Drawing No. LP1045

asin(value) Revision E

 16 Reference Guide

ARGUMENT TYPE DESCRIPTION

value float The value to be processed.

Returns the angle theta in radians such that sin(theta) is equal to value.

This function is passive.

float

theta = asin(1.0)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E asinR64(result, tag)

Reference Guide 17

ARGUMENT TYPE DESCRIPTION

result int The result.

tag int The value to be processed.

Calculates the arcsine of tag using 64-bit double precision floating point math and stores the result in
result. The input operand tag should be obtained from one of the 64-bit conversion functions provided or
from a driver that can read double precision values. All arguments to this function must be integer arrays
with lengths of 2. An in-depth example is provided in the entry for AddR64.

This function is active.

void

asinR64(result[0], tag[0])

Chapter 2 Standard Functions Drawing No. LP1045

AsText(n) Revision E

 18 Reference Guide

ARGUMENT TYPE DESCRIPTION

n int / float The value to be converted to text.

Returns the numeric value, formatted as a string. The formatting performed is equivalent to that
performed by the General numeric format. Note that numeric tags can be converted to strings by using
their AsText property, by referring, for example, to Tag1.AsText.

This function is passive.

cstring

Text = AsText(Tag1 / Tag2)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E AsTextR64(data)

Reference Guide 19

ARGUMENT TYPE DESCRIPTION

data int The 64-bit floating point value to convert.

Converts the value stored in data from a 64-bit floating point value into a string that is suitable for
display. The tag data must be an integer array with an extent of at least 2. The value of data is typically
obtained from one of the 64- bit floating point math functions provided. See the entry for AddR64 for an
example of the intended use of this function.

This function is passive.

cstring

Result = AsTextR64(data[0])

Chapter 2 Standard Functions Drawing No. LP1045

AsTextR64WithFormat(format, data) Revision E

 20 Reference Guide

ARGUMENT TYPE DESCRIPTION

format cstring A string containing the desired width, precision and flags.

data int The 64-bit floating point value to convert.

Converts the value stored in data from a 64-bit floating point value into a string that is suitable for
display per the format specified. The format should be encoded as “width.precision.flags”, where the width
defines the maximum number of characters representing the numerical portion of the resulting string and
the precision defines the number of numerical characters to the right of the decimal point in the resulting
string. Flags available are 1 to show leading zeros and 2 to hide trailing 0. The tag data must be an integer
array with an extent of at least 2. The value of data is typically obtained from one of the 64-bit floating
point math functions provided. See the entry for AddR64 for an example of the intended use of this
function.

This function is passive.

cstring

Result = AsTextR64WithFormat(“17.8.3”, data[0])

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E atan(value)

Reference Guide 21

ARGUMENT TYPE DESCRIPTION

value float The value to be processed.

Returns the angle theta in radians such that tan(theta) is equal to value.

This function is passive.

float

theta = atan(1.0)

Chapter 2 Standard Functions Drawing No. LP1045

atan2(a, b) Revision E

 22 Reference Guide

ARGUMENT TYPE DESCRIPTION

a float The value of the side that is opposite the angle theta.

b float The value of the side that is adjacent to the angle theta.

This function is equivalent to atan(a/b), except that it also considers the sign of a and b, and thereby
ensures that the return value is in the appropriate quadrant. It is also capable of handling a zero value for
b, thereby avoiding the infinity that would result if the single-argument form of tan were used instead.

This function is passive.

float

theta = atan2(1,1)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E atanR64(result, tag)

Reference Guide 23

ARGUMENT TYPE DESCRIPTION

result int The result.

tag int The value to be processed.

Calculates the arctangent of tag using 64-bit double precision floating point math and stores the result
in result. The input operand tag should be obtained from one of the 64-bit conversion functions provided
or from a driver that can read double precision values. All arguments to this function must be integer
arrays with lengths of 2. An in-depth example is provided in the entry for AddR64.

This function is active.

void

atanR64(result[0], tag[0])

Chapter 2 Standard Functions Drawing No. LP1045

atan2R64(result, a, b) Revision E

 24 Reference Guide

ARGUMENT TYPE DESCRIPTION

result int The result.

a int The value of the side that is opposite the angle theta.

b int The value of the side that is adjacent to the angle theta.

The equivalent of atan(a/b) using 64-bit double precision floating point math and stores the result in
result. This function considers the sign of a and b to calculate the value for the appropriate quadrant. It is
the double precision equivalent of the atan2 function. The input operands a and b should be obtained
from one of the 64-bit conversion functions provided or from a driver that can read double precision
values. All arguments to this function must be integer arrays with lengths of 2. An in-depth example is
provided in the entry for AddR64.

This function is active.

void

Atan2R64(result[0], a[0], b[0])

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E Beep(freq, period)

Reference Guide 25

ARGUMENT TYPE DESCRIPTION

freq int The required frequency in semitones.

period int The required period in milliseconds.

Sounds the Crimson device’s beeper for the indicated period at the indicated pitch. Passing a value of
zero for period will turn off the beeper. Beep requests are not queued, so calling the function will

immediately override any previous calls. For those of you with a musical bent, the freq argument is
calibrated in semitones. On a more serious note, the Beep function can be a useful debugging aid, as it
provides an asynchronous method of signaling the handling of an event or the execution of a program
step.

This function is active.

This function does not return a value.

Beep(60, 100)

Chapter 2 Standard Functions Drawing No. LP1045

CanGotoNext() Revision E

 26 Reference Guide

ARGUMENT TYPE DESCRIPTION

none

Returns a true or false value indicating whether a call to GotoNext() will produce a page change. A
value of false indicates that no further pages exist in the page history buffer.

This function is passive.

int

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E CanGotoPrevious()

Reference Guide 27

ARGUMENT TYPE DESCRIPTION

none

Returns a true or false value indicating whether a call to GotoPrevious() will produce a page change. A
value of false indicates that no further pages exist in the page history buffer.

This function is passive.

int

Chapter 2 Standard Functions Drawing No. LP1045

ClearEvents() Revision E

 28 Reference Guide

ARGUMENT TYPE DESCRIPTION

none

Clears the list of events displayed in the event log.

This function is active.

This function does not return a value.

ClearEvents()

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E CloseFile(file)

Reference Guide 29

ARGUMENT TYPE DESCRIPTION

file int The file handle as returned by OpenFile.

Closes a file previously opened in a call to FileOpen().

This function is active.

This function does not return a value.

CloseFile(hFile)

Chapter 2 Standard Functions Drawing No. LP1045

ColBlend(data, min, max, col1, col2) Revision E

 30 Reference Guide

ARGUMENT TYPE DESCRIPTION

data float The data value to be used to control the operation.

min float The minimum value of data.

max float The maximum value of data.

col1 int The first color, selected if data is equal to min.

col2 int The second color, selected if data is equal to max.

Returns a color created by blending two other colors, with the proportion of each color being based
upon the value of data relative to the limits specified by min and max. This function is useful when
animating display primitives by changing their colors.

This function is passive.

int

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E ColFlash(freq, col1, col2)

Reference Guide 31

ARGUMENT TYPE DESCRIPTION

freq int The number of times per second to alternate.

col1 int The first color.

col2 int The second color.

Returns an alternating color chosen from col1 and col2 that completes a cycle freq times per second.
This function is useful when animating display primitives by changing their colors.

This function is passive.

int

Chapter 2 Standard Functions Drawing No. LP1045

ColGetBlue(col) Revision E

 32 Reference Guide

ARGUMENT TYPE DESCRIPTION

col int The color from which the component is to be selected.

Returns the blue component of the indicated color value. The component is scaled to be in the range 0
to 255, even though Crimson works internally with 5-bit color components.

This function is passive.

int

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E ColGetGreen(col)

Reference Guide 33

ARGUMENT TYPE DESCRIPTION

col int The color from which the component is to be selected.

Returns the green component of the indicated color value. The component is scaled to be in the range 0
to 255, even though Crimson works internally with 5-bit color components.

This function is passive.

int

Chapter 2 Standard Functions Drawing No. LP1045

ColGetRed(col) Revision E

 34 Reference Guide

ARGUMENT TYPE DESCRIPTION

col int The color from which the component is to be selected.

Returns the red component of the indicated color value. The component is scaled to be in the range 0
to 255, even though Crimson works internally with 5-bit color components.

This function is passive.

int

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E ColGetRGB(r,g,b)

Reference Guide 35

ARGUMENT TYPE DESCRIPTION

r int The red component.

g int The green component.

b int The blue component.

Returns a color value constructed from the specified components. The components should be in the
range 0 to 255, even though Crimson works internally with 5-bit color components.

This function is passive.

int

Chapter 2 Standard Functions Drawing No. LP1045

ColPick2(pick, col1, col2) Revision E

 36 Reference Guide

ARGUMENT TYPE DESCRIPTION

pick int The condition to be used to select the color.

col1 int The first color, selected if pick is true.

col2 int The second color, selected if pick is false.

Returns one of the indicated colors, depending on the state of pick.
Equivalent results can be achieved using the ?: selection operator.

This function is passive.

int

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E ColPick4(data1, data2, col1, col2, col3, col4)

Reference Guide 37

ARGUMENT TYPE DESCRIPTION

data1 int The first data value.

data2 int The second data value.

col1 int The value when both Data1 and Data2 are true.

col2 int The value when Data1 is false and Data2 is true.

col3 int The value when Data1 is true and Data2 is false.

col4 int The value when both Data1 and Data2 are false.

Returns one of four values, based on the true or false status of two data items.

This function is passive.

int

Chapter 2 Standard Functions Drawing No. LP1045

ColSelFlash(enable, freq, col1, col2, col3) Revision E

 38 Reference Guide

ARGUMENT TYPE DESCRIPTION

enable int The value that must be true to enable flashing.

freq int The frequency at which the flashing should occur.

col1 int The value to be returned if flashing is disabled.

col2 int The first flashing color.

col3 int The second flashing color.

If enable is true, returns an alternating color chosen from col2 and col3 that completes a cycle freq times
per second. If enable is false, returns col1 constantly. This function is useful when animating display
primitives by changing their colors.

This function is passive.

int

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E CommitAndReset()

Reference Guide 39

ARGUMENT TYPE DESCRIPTION

none

This function will force all retentive tags to be written on the internal flash memory and then will reset
the unit. It is designed to be used in conjunction with functions that change the configuration of the unit,
and that then require a reset for the changes to take effect.

This function is active.

This function does not return a value.

CommitAndReset()

Chapter 2 Standard Functions Drawing No. LP1045

CompactFlashEject() Revision E

 40 Reference Guide

ARGUMENT TYPE DESCRIPTION

none

Ceases all access of the memory card, allowing safe removal of the card.

This function is active.

This function does not return a value.

CompactFlashEject()

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E CompactFlashStatus()

Reference Guide 41

ARGUMENT TYPE DESCRIPTION

none

Returns the status of the memory card slot as an integer.

 VALUE STATE DESCRIPTION

 0 Empty Either no card is installed or the card has been ejected via a call to the
CompactFlashEject function.

 1 Invalid The card is damaged, incorrectly formatted, or not formatted at all.

 2 Checking The HMI is checking the status of the card. This state occurs when a card is first inserted
into the HMI.

 3 Formatting The HMI is formatting the card. This state occurs when a format operation is requested
by the programming PC.

 4 Locked The Crimson device is either writing to the card, or the card is mounted and Windows is
accessing the card.

 5 Mounted A valid card is installed, but it is not locked by either the Crimson device or Windows.

This function is passive.

int

d = CompactFlashStatus()

Chapter 2 Standard Functions Drawing No. LP1045

CompU32(tag1, tag2) Revision E

 42 Reference Guide

ARGUMENT TYPE DESCRIPTION

tag1 int The tag to be compared.

tag2 int The tag to be compared to.

Compares tag1 to tag2 in an unsigned context. Returns one of the following:

 -1 tag1 is less than tag2.

 0 tag1 is equal to tag2.

 +1 tag1 is greater than tag2

This function is passive.

int

Result = CompU32(tag1, tag2)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E ControlDevice(device, enable)

Reference Guide 43

ARGUMENT TYPE DESCRIPTION

device int The device to be enabled or disabled.

enable int Determines if device is enabled or disabled.

Allows the database to disable or enable a specified communications device. The number to be placed
in the device argument to identify the device can be viewed in the status bar of the Communications
category when the device name is highlighted.

This function is active.

This function does not return a value.

ControlDevice(1, true)

Chapter 2 Standard Functions Drawing No. LP1045

Copy(dest, src, count) Revision E

 44 Reference Guide

ARGUMENT TYPE DESCRIPTION

dest int / float The first array element to be copied to.

src int / float The first array element to be copied from.

count int The number of elements to be processed.

Copies count array elements from src onwards to dest onwards.

This function is active.

This function does not return a value.

Copy(Save[0], Work[0], 100)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E CopyFiles(source, target, flags)

Reference Guide 45

ARGUMENT TYPE DESCRIPTION

source cstring The path from which the files are to be copied.

target cstring The path to which the files are to be copied.

flags int The flags controlling the copying operation.

Copies all the files in the source directory to the target directory.
The various bits in flags modify the copy operation, as follows:

 BIT WEIGHT DESCRIPTION

 0 1 If set, the operation will recurse into any subdirectories.

 1 2 If set, existing files will be overwritten.
If clear, existing files will be left untouched.

 2 4 If set, all files will be copied.
If clear, only files that do not exist at the destination or that have newer time stamps at the
source will be copied.

The return value of the function will be true for success, or false for failure.

This function is active.

int

CopyFiles(“C:\LOGS”, “C:\BACKUP”, 1)

Chapter 2 Standard Functions Drawing No. LP1045

cos(theta) Revision E

 46 Reference Guide

ARGUMENT TYPE DESCRIPTION

theta float The angle, in radians, to be processed.

Returns the cosine of the angle theta.

This function is passive.

float

xp = radius*cos(theta)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E cosR64(result, tag)

Reference Guide 47

ARGUMENT TYPE DESCRIPTION

result int The result.

tag int The angle, in radians, to be processed.

Calculates the cosine of tag using 64-bit double precision floating point math and stores the result in
result. The input operand tag should be obtained from one of the 64-bit conversion functions provided or
from a driver that can read double precision values. All arguments to this function must be integer arrays
with lengths of 2. An in-depth example is provided in the entry for AddR64.

This function is active.

void

cosR64(result[0], tag[0])

Chapter 2 Standard Functions Drawing No. LP1045

CreateDirectory(name) Revision E

 48 Reference Guide

ARGUMENT TYPE DESCRIPTION

name cstring The directory to be created

Creates a new directory on the memory card. The Crimson 3.1 filing system now supports both FAT16
and FAT32. If the memory card has been formatted to use FAT32, then long filenames may be used. If
the memory card has been formatted using FAT16, then long filenames are not supported. Note that if
backslashes are included in the pathname to separate path elements, they must be doubled-up per
Crimson’s rules for string constants, as described in the chapter on Writing Expressions within the
Crimson 3.1 Software Guide. To avoid this complication, forward slashes can be used in place of
backslashes without the need for such doubling. The function returns a value of one if it succeeds, and a
value of zero if it fails.

This function is active.

int

Result = CreateDirectory(“/LOGS/LOG1”)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E CreateFile(name)

Reference Guide 49

ARGUMENT TYPE DESCRIPTION

name cstring The file to be created.

Creates an empty file on the memory card. The Crimson 3.1 filing system now supports both FAT16 and
FAT32. If the memory card has been formatted to use FAT32, then long filenames may be used. If the
memory card has been formatted using FAT16, then long filenames are not supported. Note that if
backslashes are included in the pathname to separate path elements, they must be doubled-up per
Crimson’s rules for string constants, as described in the chapter on Writing Expressions within the
Crimson 3.1 Software Guide. To avoid this complication, forward slashes can be used in place of
backslashes without the need for such doubling. The function returns a value of one if it succeeds, and a
value of zero if it fails. Note that the file is not opened after it is created—a subsequent call to
OpenFile() must be made to read or write data.

This function is active.

int

Success = CreateFile(“/logs/custom/myfile.txt”)

Chapter 2 Standard Functions Drawing No. LP1045

DataToText(data, limit) Revision E

 50 Reference Guide

ARGUMENT TYPE DESCRIPTION

data int The first element in an array.

limit int The number of characters to process.

Forms a string from an array, extracting 4 characters from each numeric array element until either the
limit is reached or a null character is detected.

This function is passive.

cstring

string = DataToText(Data[0], 8)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E Date(y, m, d)

Reference Guide 51

ARGUMENT TYPE DESCRIPTION

y int The year to be encoded, in four-digit form.

m int The month to be encoded, from 1 to 12.

d int The date to be encoded, from 1 upwards.

Returns a value representing the indicated date as the number of seconds elapsed since the datum
point of 1st January 1997. This value can then be used with other time/date functions.

This function is passive.

int

t = Date(2000,12,31)

Chapter 2 Standard Functions Drawing No. LP1045

DecR64(result, tag) Revision E

 52 Reference Guide

ARGUMENT TYPE DESCRIPTION

result int The result.

tag int The value to be processed.

Decrements the value of tag by one using 64-bit (double precision) floating point math and stores the
result in result. This is the double precision equivalent of the -- operator. The input operand tag should be
obtained from one of the 64-bit conversion functions provided or from a driver that can read double
precision values. All arguments to this function must be integer arrays with lengths of 2. An in-depth
example is provided in the entry for AddR64.

This function is active.

void

DecR64(result[0], tag[0])

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E DecToText(data, signed, before, after, leading, group)

Reference Guide 53

ARGUMENT TYPE DESCRIPTION

data int/float The numeric data to be formatted.

signed int 0 – unsigned, 1 – soft sign, 2 – hard sign.

before int The number of digits to the left of the decimal point.

after int The number of digits to the right of the decimal point.

leading int 0 – no leading zeros, 1 – leading zeros.

group int 0 – no grouping, 1 – group digits in threes.

Formats the value in data as a decimal value per the rest of the parameters. The function is typically
used to generate advanced formatting options via programs, or to prepare strings to be sent via a raw
port driver.

This function is passive.

cstring

Text = DecToText(var1, 2, 5, 2, 0, 1)

Chapter 2 Standard Functions Drawing No. LP1045

Deg2Rad(theta) Revision E

 54 Reference Guide

ARGUMENT TYPE DESCRIPTION

theta float The angle to be processed.

Returns theta converted from degrees to radians.

This function is passive.

float

Load = Weight * cos(Deg2Rad(Angle))

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E DeleteDirectory(name)

Reference Guide 55

ARGUMENT TYPE DESCRIPTION

name cstring The directory to be deleted.

Removes an empty directory (i.e. one that contains no files and/or subdirectories) from the memory
card. The Crimson 3.1 filing system now supports both FAT16 and FAT32. If the memory card has been
formatted to use FAT32, then long filenames may be used. If the memory card has been formatted using
FAT16, then long filenames are not supported. Note that if backslashes are included in the pathname to
separate path elements, they must be doubled-up per Crimson’s rules for string constants, as described in
the chapter on Writing Expressions within the Crimson 3.1 Software Guide. To avoid this complication,
forward slashes can be used in place of backslashes without the need for such doubling. The function
returns a value of one if it succeeds, and a value of zero if it fails.

This function is active.

int

Success = DeleteDirectory(“/logs/custom”)

Chapter 2 Standard Functions Drawing No. LP1045

DeleteFile(file) Revision E

 56 Reference Guide

ARGUMENT TYPE DESCRIPTION

file int The file handle as returned by OpenFile.

Closes and then deletes a file located on the memory card. The file must first be opened in a writeable
state.

This function is active.

int

hFile = OpenFile(“/LOGS/LOG1/01010101.csv”, 1)
Result = DeleteFile(hFile)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E DevCtrl(device, function, data)

Reference Guide 57

ARGUMENT TYPE DESCRIPTION

device int The index of the device to be controlled.

function int The required function to be executed.

data cstring Any parameter for the function.

This function is used to perform a special operation on a communications device. The number to be
placed in the device argument to identify the device can be viewed in the status bar of the
Communications category when the device name is highlighted. The specific action to be performed is
indicated by the function parameter, the values of which will depend upon the type of device being

addressed. The data parameter may be used to pass additional information to the driver. Most drivers do
not support this function. Where supported, the operations are driver-specific, and are documented
separately.

This function is active.

int

Refer to comms driver application notes for specific examples.

Chapter 2 Standard Functions Drawing No. LP1045

DisableDevice(device) Revision E

 58 Reference Guide

ARGUMENT TYPE DESCRIPTION

device int The device to be disabled.

Disables communications for the specified device. The number to be placed in the device argument to
identify the device can be viewed in the status bar of the Communications category when the device
name is highlighted.

The function is passive.

This function does not return a value.

DisableDevice(1)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E DispOff()

Reference Guide 59

ARGUMENT TYPE DESCRIPTION

none

Turns the display backlight off.

This function is active.

This function does not return a value.

DispOff()

Chapter 2 Standard Functions Drawing No. LP1045

DispOn() Revision E

 60 Reference Guide

ARGUMENT TYPE DESCRIPTION

none

Turns the display backlight on.

This function is active.

This function does not return a value.

DispOn()

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E DivR64(result, tag1, tag2)

Reference Guide 61

ARGUMENT TYPE DESCRIPTION

result int The result.

tag1 int The dividend.

tag2 int The divisor.

Calculates the value of tag1 divided by tag2 using 64-bit double precision floating point math and stores
the result in result. This is the double precision equivalent of tag1 / tag2. The input operands tag1 and
tag2 should be obtained from one of the 64-bit conversion functions provided or from a driver that can
read double precision values. All arguments to this function must be integer arrays with lengths of 2. An
in-depth example is provided under AddR64.

This function is active.

void

DivR64(result[0], tag1[0], tag2[0])

Chapter 2 Standard Functions Drawing No. LP1045

DivU32(tag1, tag2) Revision E

 62 Reference Guide

ARGUMENT TYPE DESCRIPTION

tag1 int The dividend.

tag2 int The divisor.

Returns the value of tag1 divided by tag2 in an unsigned context.

This function passive.

int

Result = DivU32(tag1, tag2)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E DrvCtrl(port, function, data)

Reference Guide 63

ARGUMENT TYPE DESCRIPTION

port int The index of the driver to be controlled.

function int The required function to be executed.

data int Any parameter for the function.

This function is used to perform a special operation on a communications driver. The number to be
placed in the port argument to identify the driver is the port number to which the driver is bound. The
specific action to be performed is indicated by the function parameter, the values of which will depend

upon the driver itself. The data parameter may be used to pass additional information to the driver. Most
drivers do not support this function. Where supported, the operations are driver-specific, and are
documented separately.

This function is active.

int

Refer to the communications driver application notes for specific examples, available online at:
http:// www.redlion.net/red-lion-software/crimson/crimson-31.

Chapter 2 Standard Functions Drawing No. LP1045

EjectDrive(drive) Revision E

 64 Reference Guide

ARGUMENT TYPE DESCRIPTION

drive int The drive letter of the drive to be ejected.

Ejects a removable drive attached to the system, allowing safe removal of the device.
Drive C refers to the memory card, while Drive D refers to the USB memory stick.

This function is active.

This function does not return a value.

EjectDrive(‘C’)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E EmptyWriteQueue (dev)

Reference Guide 65

ARGUMENT TYPE DESCRIPTION

dev int The device number.

Empties the writing queue for the device identified with the argument dev. This will remove any
pending writes to the device from the queue, therefore the removed information will not be transferred
to the device. The device number can be identified in Crimson’s status bar when a device is selected in
Communication.

This function is passive.

This function does not return a value.

EmptyWriteQueue(1)

Chapter 2 Standard Functions Drawing No. LP1045

EnableBatteryCheck(disable) Revision E

 66 Reference Guide

ARGUMENT TYPE DESCRIPTION

disable int Set to 1 to disable the check

Enable or disable the battery check that is performed after the system starts up. Set disable to 0 to
enable the battery check. Set disable to 1 to disable the battery check. If the battery check is enabled and
the battery is low, the system will show a warning screen to inform the user. The user must either wait 60
seconds or follow the on-screen instructions to proceed past the warning. If the battery check is disabled,
the battery low warning screen will never be displayed, regardless of the battery's status.

This function is active.

void

EnableBatteryCheck(0)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E EnableDevice(device)

Reference Guide 67

ARGUMENT TYPE DESCRIPTION

device int The device to be enabled.

Enables communications for the specified device. The number to be placed in the device argument to
identify the device can be viewed in the status bar of the Communications category when the device
name is highlighted.

This function is passive.

This function does not return a value.

EnableDevice(1)

Chapter 2 Standard Functions Drawing No. LP1045

EndBatch() Revision E

 68 Reference Guide

ARGUMENT TYPE DESCRIPTION

none

Stops the current batch. Note that starting a new batch within less than 10 seconds of ending or
starting the last one will produce undefined behavior. To go straight from one batch to another, call
NewBatch() without an intervening call to EndBatch().

This function is passive.

This function does not return a value.

Result = EndBatch()

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E EndModal(code)

Reference Guide 69

ARGUMENT TYPE DESCRIPTION

code int The value to be returned to the caller of ShowModal.

Modal popups displayed using the ShowModal() function are displayed immediately. The ShowModal()
function will not return until an action on the popup page calls EndModal(), at which point the value
passed by the latter will be returned to the caller of the former.

This function is active.

This function does not return a value.

Chapter 2 Standard Functions Drawing No. LP1045

EnumOptionCard(s) Revision E

 70 Reference Guide

ARGUMENT TYPE DESCRIPTION

s int The option card slot, either 0 or 1.

Returns the type of the option card configured for the indicated slot.
The following values may be returned:

 VALUE CARD TYPE

 0 None

 1 Serial

 2 CAN

 3 Profibus

 4 FireWire

 5 DeviceNet

 6 CAT Link

 7 Modem

 8 MPI

 9 Ethernet

 10 USB Host

This function is passive.

int

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E EqualR64(a, b)

Reference Guide 71

ARGUMENT TYPE DESCRIPTION

a int The first value to compare.

b int The second value to compare.

Compares the value of a to b using 64-bit double precision floating point math and returns 1 if a is equal
to b, and 0 otherwise. This is the double precision equivalent of a == b. Note that comparing floating point
values for exact equality can be error prone due to rounding errors. The input operands a and b should be
obtained from one of the 64-bit conversion functions provided or from a driver that can read double
precision values. All arguments to this function must be integer arrays with lengths of 2. An in depth
example is provided in the entry for AddR64.

This function is passive.

int

EqualR64(a[0], b[0])

Chapter 2 Standard Functions Drawing No. LP1045

exp(value) Revision E

 72 Reference Guide

ARGUMENT TYPE DESCRIPTION

value float The value to be processed.

Returns e (2.7183…) raised to the power of value.

This function is passive.

float

Variable2 = exp(1.609)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E exp10(value)

Reference Guide 73

ARGUMENT TYPE DESCRIPTION

value float The value to be processed.

Returns 10 raised to the power of value.

This function is passive.

float

Variable4 = exp10(0.699)

Chapter 2 Standard Functions Drawing No. LP1045

exp10R64(result, tag) Revision E

 74 Reference Guide

ARGUMENT TYPE DESCRIPTION

result int The result.

tag int The value to be processed.

Calculates the value of 10 raised to the power of tag using 64-bit double precision floating point math
and stores the result in result. The input operand tag should be obtained from one of the 64-bit
conversion functions provided or from a driver that can read double precision values. All arguments to
this function must be integer arrays with lengths of 2. An in-depth example is provided in the entry for
AddR64.

This function is active.

void

Exp10R64(result[0], tag1[0])

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E expR64(result, tag)

Reference Guide 75

ARGUMENT TYPE DESCRIPTION

result int The result.

tag int The value to be processed.

Calculates the value of e (2.7183…) raised to the power of tag using 64-bit (double precision) floating
point math and stores the result in result. The input operand tag should be obtained from one of the 64-
bit conversion functions provided or from a driver that can read double precision values. All arguments to
this function must be integer arrays with lengths of 2. An indepth example is provided in the entry for
AddR64.

This function is active.

void

expR64(result[0], tag[0])

Chapter 2 Standard Functions Drawing No. LP1045

FileSeek(file, pos) Revision E

 76 Reference Guide

ARGUMENT TYPE DESCRIPTION

file int The file handle as returned by OpenFile.

pos int The position within the file.

Moves the file pointer for the specified file to the indicated location.

This function is active.

int

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E FileTell(file)

Reference Guide 77

ARGUMENT TYPE DESCRIPTION

file int The file handle as returned by OpenFile.

Returns the current value of the file pointer for the specified file.

This function is passive.

int

Chapter 2 Standard Functions Drawing No. LP1045

Fill(element, data, count) Revision E

 78 Reference Guide

ARGUMENT TYPE DESCRIPTION

element int / float The first array element to be processed.

data int / float The data value to be written.

count int The number of elements to be processed.

Sets count array elements from element onwards to be equal to data.

This function is active.

This function does not return a value.

Fill(List[0], 0, 100)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E Find(string, char, skip)

Reference Guide 79

ARGUMENT TYPE DESCRIPTION

string cstring The string to be processed.

char int The character to be found.

skip int The number of times the character is skipped.

Returns the position of char in string, ignoring the first skip occurrences specified. The first position
counted is 0. Returns -1 if char is not found. In the example below, the position of the period, skipping
the first occurrence, is 7.

This function is passive.

int

Position = Find("one:two:three",':',1)

Chapter 2 Standard Functions Drawing No. LP1045

FindFileFirst(dir) Revision E

 80 Reference Guide

ARGUMENT TYPE DESCRIPTION

dir cstring Directory to be used in search.

Returns the filename of name of the first file or directory located in the dir directory on the memory
card. Returns an empty string if no files exist or if no memory card is present. This function can be used
with the FindFileNext function to scan all files in each directory.

This function is active.

cstring

Name = FindFileFirst(“/LOGS/LOG1/”)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E FindFileNext()

Reference Guide 81

ARGUMENT TYPE DESCRIPTION

none

Returns the filename of the next file or directory in the directory specified in a previous call to the
FindFileFirst function. Returns an empty string if no more files exist. This function can be used with

the FindFileFirst function to scan all files in each directory.

This function is active.

cstring

Name = FindFileNext()

Chapter 2 Standard Functions Drawing No. LP1045

FindTagIndex(label) Revision E

 82 Reference Guide

ARGUMENT TYPE DESCRIPTION

label cstring The tag label (not tag name or mnemonic).

Returns the index number of the tag specified by label.

This function is active.

int

Index = FindTagIndex(“Power”)

Returns the index number for the tag with label Power.

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E Flash(freq)

Reference Guide 83

ARGUMENT TYPE DESCRIPTION

freq int The number of times per second to flash.

Returns an alternating true or false value that completes a cycle freq times per second. This function is
useful when animating display primitives or changing their colors.

This function is passive.

int

Chapter 2 Standard Functions Drawing No. LP1045

Force(dest, data) Revision E

 84 Reference Guide

ARGUMENT TYPE DESCRIPTION

dest int / float The tag to be changed.

data int / float The value to be written.

This function sets the specified tag to the specified value. It differs from the more normally used
assignment operator in that it (a) deletes any queued writes to this tag and replaces them with an
immediate write of the specified value; and (b) forces a write to the remote comms device whether or not
the data value has changed. It is used in situations where Crimson’s normal write behavior is not required.

This function is active.

This function does not return a value.

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E ForceCopy(dest, src, count)

Reference Guide 85

ARGUMENT TYPE DESCRIPTION

dest int / float The first array element to be copied to.

src int / float The first array element to be copied from.

count int The number of elements to be processed.

Copies count array elements from src onwards to dest onwards. The semantics used are the same as
for the Force() function, thereby bypassing the write queue and forcing a write whether or not the
original data has changed.

This function is active.

This function does not return a value.

Chapter 2 Standard Functions Drawing No. LP1045

ForceSQLSync() Revision E

 86 Reference Guide

ARGUMENT TYPE DESCRIPTION

none

Forces the SQL Sync service to run immediately and transmit log data to the configured SQL Server.
Only works if the Manual Sync property of the SQL Sync service has been set to Yes.

This function is active.

This function does not return a value.

ForceSQLSync()

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E FormatCompactFlash()

Reference Guide 87

ARGUMENT TYPE DESCRIPTION

none

Formats the memory card in the Crimson device, thereby deleting all data on the card. You should
ensure that the user is given appropriate warnings before this function is invoked.

This function is active.

This function does not return a value.

FormatCompactFlash()

Chapter 2 Standard Functions Drawing No. LP1045

FormatDrive(drive) Revision E

 88 Reference Guide

ARGUMENT TYPE DESCRIPTION

drive int The letter of the drive to be formatted.

Formats a removable drive attached to the system, deleting all data that it contains.
Drive C refers to the memory card, while Drive D refers to the USB memory stick.

This function is active.

This function does not return a value.

FormatDrive(‘C’)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E FtpGetFile(server, loc, rem, delete)

Reference Guide 89

ARGUMENT TYPE DESCRIPTION

server int The FTP connection number, always 0.

loc cstring The local file name on the memory card.

rem cstring The remote file name on the FTP server.

delete int If true, the source will be deleted after the transfer.
If false, it will remain on the source disk.

This function will transfer the defined file from the FTP server to the Crimson device memory card. It
will return true if the transfer is successful and false otherwise. The source and destination file names can
be different. The remote path is relative to the FTP server setting root path. See the Synchronization
Manager for more details.

This function is passive.

int

Success = FtpGetFile(0, “/Recipes.csv”, “/Recipes/Rec001.csv”, 0)

Chapter 2 Standard Functions Drawing No. LP1045

FtpPutFile(server, loc, rem, delete) Revision E

 90 Reference Guide

ARGUMENT TYPE DESCRIPTION

server int The FTP connection number, always 0.

loc cstring The local file name on the memory card.

rem cstring The remote file name on the FTP server.

delete int If true, the source will be deleted after the transfer.
If false, it will remain on the source disk.

This function will transfer the defined file from the Crimson device memory card to the FTP server. It
will return true if the transfer is successful, and false otherwise. The source and destination file names can
be different. The remote path is relative to the FTP server setting root path. See the Synchronization
Manager for more details.

This function is passive.

int

Success = FtpPutFile(0, “/LOGS/Report.txt”, “/Reports/Report.txt”, 1)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetAlarmTag(index)

Reference Guide 91

ARGUMENT TYPE DESCRIPTION

index int The tag index number.

This function returns an integer bit mask representing the tag alarms state for the tag identified with
index. Bit 0 (i.e. the bit with a value of 0x01) represents the state of Alarm 1 and bit 1 (i.e. the bit with a
value of 0x02) represents the state of Alarm 2. The tag index can be found from the tag name using the
FindTagIndex() function, or by looking up the tag in the configuration software.

This function is passive.

int

AlarmsInTag = GetAlarmTag(12)

Chapter 2 Standard Functions Drawing No. LP1045

GetAutoCopyStatusCode() Revision E

 92 Reference Guide

ARGUMENT TYPE DESCRIPTION

none

Returns a value indicating the status of the synchronization operation that can optionally occur when a
USB memory stick is inserted into the Crimson device. The possible values and their meanings follow:

 VALUE DESCRIPTION

 0 Synchronization is not enabled.

 1 The synchronization task is initializing.

 2 The task is waiting for a memory stick to be inserted.

 3 The task is copying the required files.

 4 The task has completed, and is waiting for the stick to be removed.

This function is passive.

int

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetAutoCopyStatusText()

Reference Guide 93

ARGUMENT TYPE DESCRIPTION

none

Returns a string equivalent to the status code returned by GetAutoCopyStatus().

This function is passive.

cstring

Chapter 2 Standard Functions Drawing No. LP1045

GetBatch() Revision E

 94 Reference Guide

ARGUMENT TYPE DESCRIPTION

none

Returns the name of the current batch.

This function is passive.

cstring

CurrentBatch = GetBatch()

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetCameraData(port, camera, param)

Reference Guide 95

ARGUMENT TYPE DESCRIPTION

port int The port number where the camera is connected.

camera int The camera number on the port.

param int The camera parameter to be read.

This function returns the value of the parameter number param for a Banner camera connected on the
Crimson device. The argument camera is the device number displayed in the Crimson 3.1 status bar when
the camera is selected. More than one camera can be connected under the driver. The number to be
placed in the port argument is the port number to which the driver is bound. Please see Banner
documentation for parameter numbers and details.

This function is active.

int

Value = GetCameraData(4, 0, 1)

Chapter 2 Standard Functions Drawing No. LP1045

GetCurrentUserName() Revision E

 96 Reference Guide

ARGUMENT TYPE DESCRIPTION

none

Returns the current user name, or an empty string is no user if logged on. Note that displaying the
current user name may prejudice security in situations where user names are not commonly known. Care
should thus be used in high-security applications.

This function is passive.

cstring

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetCurrentUserRealName()

Reference Guide 97

ARGUMENT TYPE DESCRIPTION

none

Returns the real name of the current user, or an empty string if no user is logged on.

This function is passive.

cstring

Chapter 2 Standard Functions Drawing No. LP1045

GetCurrentUserRights() Revision E

 98 Reference Guide

ARGUMENT TYPE DESCRIPTION

none

Returns the user rights of the current user, as defined for the HasAccess() function.

This function is passive.

int

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetDate (time) and Family

Reference Guide 99

ARGUMENT TYPE DESCRIPTION

time int The time value to be decoded.

Each member of this family of functions returns some component of a time/date value, as previously
created by GetNow, Time or Date. The available functions are as follows:

 FUNCTION DESCRIPTION

 GetDate Returns the day-of-month portion of time.

 GetDay Returns the day-of-week portion of time.

 GetDays Returns the number of days in time.

 GetHour Returns the hours portion of time.

 GetMin Returns the minutes portion of time.

 GetMonth Returns the month portion of time.

 GetSec Returns the seconds portion of time.

 GetWeek Returns the week-of-year portion of time.

 GetWeeks Returns the number of weeks in time.

 GetWeekYear Returns the week year when using week numbers.

 GetYear Returns the year portion of time.

Note that GetDays and GetWeeks are typically used with the difference between two time values to
calculate how long has elapsed in terms of days or weeks. Note also that the year returned by
GetWeekYear is not always the same as that returned by GetYear, as the former may return a smaller
value if the last week of a year extends beyond year-end.

These functions are passive.

int

d = GetDate(GetNow() – 12*60*60)

Chapter 2 Standard Functions Drawing No. LP1045

GetDeviceStatus(device) Revision E

 100 Reference Guide

ARGUMENT TYPE DESCRIPTION

device int The comms device to be queried.

Returns the communications status of the specific comms device.
The bottom two bits encode the device’s error state, as follows:

 VALUE DESCRIPTION

 0 The device comms is initializing.

 1 The device comms is operating correctly.

 2 The device comms has one or more soft errors.

 3 The device comms has encountered a fatal error.

The following hexadecimal values encode further information about the device:

 VALUE DESCRIPTION

 0x0010 At least one error exists in the automatic comms blocks.

 0x0020 At least one error exists in the gateway comms blocks.

 0x0040 Communications to this device are suspended.

 0x0100 Some level of response has been received from the device.

 0x0200 Some form of error has occurred during communications.

 0x1000 The primary write queue is nearly full.

 0x2000 The secondary write queue is nearly full.

Note that the 0x0100 value does not imply that comms is working correctly, but merely that some sort
of response has been received. It is useful for confirming wiring and so on. In a similar manner, the
0x0200 values does not imply that comms has failed, but indicates that all is not running as smoothly as it
should. For example, Crimson’s retry mechanism may allow recovery from errors such that comms
appears to be operating, but this bit may still indicate that things are not proceeding on an error free
basis.

This function is passive.

int

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetDiskFreeBytes(drive)

Reference Guide 101

ARGUMENT TYPE DESCRIPTION

drive int The drive number, always 0.

Returns the number of free memory kilobytes on the memory card. Note that it takes a considerable
amount of effort to calculate the available space as many read operations must be performed. Do not,
therefore, use this function in an expression that is called too often, by placing it on a display page or
running it in response to the tick event. Rather, call it in response to a page’s OnSelect event and store
the value in a tag for later display.

This function is passive.

int

FreeMemory = GetDiskFreeBytes(0)

Chapter 2 Standard Functions Drawing No. LP1045

GetDiskFreePercent(drive) Revision E

 102 Reference Guide

ARGUMENT TYPE DESCRIPTION

drive int The drive number, always 0.

Returns the percentage of free memory space on the memory card. Note that it takes a considerable
amount of effort to calculate the available space as many read operations must be performed. Do not,
therefore, use this function in an expression that is called too often, by placing it on a display page or
running it in response to the tick event. Rather, call it in response to a page’s OnSelect event and store
the value in a tag for later display.

This function is passive.

int

FreeMemory = GetDiskFreePercent(0)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetDiskSizeBytes(drive)

Reference Guide 103

ARGUMENT TYPE DESCRIPTION

drive int The drive number, always 0.

Returns the size in kilobytes of the memory card. Note that it takes a considerable amount of effort to
calculate the available space as many read operations must be performed. Do not, therefore, use this
function in an expression that is called too often, by placing it on a display page or running it in response
to the tick event. Rather, call it in response to a page’s OnSelect event and store the value in a tag for
later display.

This function is passive.

int

DiskSize = GetDiskSizeBytes(0)

Chapter 2 Standard Functions Drawing No. LP1045

GetDriveStatus(drive) Revision E

 104 Reference Guide

ARGUMENT TYPE DESCRIPTION

drive int The drive letter of the drive to be queried.

Returns the status of the specified drive as an integer, as follows:

 VALUE STATE DESCRIPTION

 0 Empty Either no card is installed or the card has been ejected via a call to the DriveEject
function.

 1 Invalid The card is damaged, incorrectly formatted or not formatted at all.

 2 Checking The HMI is checking the status of the card. This state occurs when a card is first inserted
into the HMI.

 3 Formatting The HMI is formatting the card. This state occurs when a format operation is requested
by the programming PC.

 4 Locked The Crimson device is either writing to the card, or the card is mounted and Windows is
accessing the card.

 5 Mounted A valid card is installed, but it is not locked by either the Crimson device or Windows.

Drive C refers to the memory card, while Drive D refers to the USB memory stick.

This function is passive.

int

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetFileByte(file)

Reference Guide 105

ARGUMENT TYPE DESCRIPTION

file int File handle as returned by OpenFile.

Reads a single byte from the indicated file. A value of -1 indicates the end of file.

This function is active.

int

Chapter 2 Standard Functions Drawing No. LP1045

GetFileData(file, data, length) Revision E

 106 Reference Guide

ARGUMENT TYPE DESCRIPTION

file int The file handle as returned by OpenFile.

data int The first array element at which to store the data.

length int The number of elements to process.

Reads length bytes from the specified file, and stores them in the indicated array elements.
The return value indicates the number of bytes successfully read, and may be less than length.

This function is active.

int

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetFormattedTag(index)

Reference Guide 107

ARGUMENT TYPE DESCRIPTION

index int Tag index number.

Returns a string representing the formatted value of the tag specified by index. The string returned
follows the format programmed on the targeted tag. The index can be found from the tag label using the
function FindTagIndex() or by looking it up in the Crimson configuration tool. This function works with
any type of tags.

This function is active.

cstring

Value = GetFormattedTag(10)

Chapter 2 Standard Functions Drawing No. LP1045

GetInterfaceStatus(port) Revision E

 108 Reference Guide

ARGUMENT TYPE DESCRIPTION

interface int The interface to be queried.

Returns a string indicating the status of the specified TCP/IP interface.

This function is passive.

cstring

EthernetStatus = GetInterfaceStatus(1)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetIntTag(index)

Reference Guide 109

ARGUMENT TYPE DESCRIPTION

index int The tag index number.

Returns the value of the integer tag specified by index. The index can be found from the Crimson
configuration tool, or from the tag label using the function FindTagIndex(). This function will work only
if the tag is an integer.

This function is active.

int

Value = GetIntTag(10)

Chapter 2 Standard Functions Drawing No. LP1045

GetLanguage() Revision E

 110 Reference Guide

ARGUMENT TYPE DESCRIPTION

none

Returns the currently selected language, as passed to the SetLanguage() function.

This function is passive.

int

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetLastEventText(all)

Reference Guide 111

ARGUMENT TYPE DESCRIPTION

all int Set to true to also include alarm events.

Returns the label of the last event captured by the event log. If the all parameter is set to true, the
definition of event includes those automatically generated by the alarm system, rather than just those
generated by the Event Logger.

This function is passive.

cstring

Chapter 2 Standard Functions Drawing No. LP1045

GetLastEventTime(all) Revision E

 112 Reference Guide

ARGUMENT TYPE DESCRIPTION

all int Set to true to also include alarm events.

Returns the time at which the last event capture by the event logger occurred. The value can be
displayed in a human-readable form using a field that has the Time and Date format type. If the all
parameter is set to true, the definition of event includes events automatically generated by the alarm
system, rather than just those generated by the Event Logger.

This function is passive.

int

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetLastEventType(all)

Reference Guide 113

ARGUMENT TYPE DESCRIPTION

all int Set to true to also include alarm events.

Returns a string indicating the type of the last event captured by the event logging system. If the all
parameter is set to true, the definition of event includes events automatically generated by the alarm
system, rather than just those generated by the Event Logger.

This function is passive.

Cstring

Chapter 2 Standard Functions Drawing No. LP1045

GetLastSQLSyncStatus() Revision E

 114 Reference Guide

ARGUMENT TYPE DESCRIPTION

none

Returns the status from the last time that the SQL Sync Service attempted to synchronize data logs with
a SQL server.

 VALUE STATE DESCRIPTION

 0 Pending The status of the SQL Sync service is in an indeterminate state. This is because the service
has yet to run, the service has not yet completed synchronizing with the SQL server, or the
service is disabled.

 1 Success The service successfully synchronized with the SQL server.

 2 Failure The service failed to synchronize with the SQL server.

This function is passive.

int

Status = GetLastSQLSyncStatus()

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetLastSQLSyncTime(Request)

Reference Guide 115

ARGUMENT TYPE DESCRIPTION

Request int The specific time to retrieve.

Returns the last time that the SQL Sync Service synchronized with a SQL server since the system
started up. The returned value is suitable for formatting using the Crimson time manipulation functions.
Until the service attempts to synchronize, all three request types return 0, which represents January 1,
1997.

 VALUE REQUEST TYPE DESCRIPTION

 0 Last Start Time Get the last time that the SQL Sync Service began synchronizing with a SQL
server.

 1 Last Success Time Get the last time that the service successfully synchronized with a SQL server.

 2 Last Failure Time Get the last time that the service failed to synchronize with a SQL server.

This function is passive.

int

LastStartTime = GetLastSQLSyncTime(0)

LastSuccessTime = GetLastSQLSyncTime(1)

LastFailTime = GetLastSQLSyncTime(2)

Chapter 2 Standard Functions Drawing No. LP1045

GetModelName(code) Revision E

 116 Reference Guide

ARGUMENT TYPE DESCRIPTION

code int The name to return. Only 1 is supported at this time.

Returns the name of the hardware platform on which Crimson is executing.

This function is passive.

cstring

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetMonthDays(y, m)

Reference Guide 117

ARGUMENT TYPE DESCRIPTION

y int The year to be processed, in four-digit form.

m int The month to be processed, from 1 to 12.

Returns the number of days in the indicated month, accounting for leap years, etc.

This function is passive.

int

Days = GetMonthDays(2000, 3)

Chapter 2 Standard Functions Drawing No. LP1045

GetNetGate(port) Revision E

 118 Reference Guide

ARGUMENT TYPE DESCRIPTION

port int The index of the Ethernet port. Must be zero.

Returns the IP address of the port’s default gateway as a dotted-decimal text string.

The function is passive.

cstring

gate = GetNetGate(0)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetNetId(port)

Reference Guide 119

ARGUMENT TYPE DESCRIPTION

port int The index of the Ethernet port.

Reports an Ethernet port’s MAC address as 17-character text string.

 INDEX DESCRIPTION

 0 Returns address of first or only port configured.

 1 Returns address of port 1.

 2 Returns address of port 2.

This function is passive.

cstring

MAC = GetNetId(1)

Chapter 2 Standard Functions Drawing No. LP1045

GetNetIp(port) Revision E

 120 Reference Guide

ARGUMENT TYPE DESCRIPTION

port int The index of the Ethernet port.

Reports an Ethernet port’s IP address as a dotted-decimal text string.

This function is passive.

cstring

IP = GetNetIp(1)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetNetMask(port)

Reference Guide 121

ARGUMENT TYPE DESCRIPTION

port int The index of the Ethernet port. Must be zero.

Reports an Ethernet port’s IP address mask as a dotted-decimal text string.

This function is passive.

cstring

mask = GetNetMask(0)

Chapter 2 Standard Functions Drawing No. LP1045

GetNow() Revision E

 122 Reference Guide

ARGUMENT TYPE DESCRIPTION

none

Returns the current time and date as the number of seconds elapsed since the datum point of 1st
January 1997. This value can then be used with other time/date functions.

This function is passive.

int

t = GetNow()

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetNowDate()

Reference Guide 123

ARGUMENT TYPE DESCRIPTION

none

Returns the number of seconds in the days that have passed since 1st of January 1997.

This function is passive.

int

d = GetNowDate()

Chapter 2 Standard Functions Drawing No. LP1045

GetNowTime() Revision E

 124 Reference Guide

ARGUMENT TYPE DESCRIPTION

none

Returns the time of day in terms of seconds.

This function is passive.

int

t = GetNowTime()

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetPortConfig(port, param)

Reference Guide 125

ARGUMENT TYPE DESCRIPTION

port int The number of the port to be set.

param int The port parameter to be set.

Returns the value of a parameter on port. The port number starts from the programming port with value
1. The table below shows the various param settings and associated return values.

 VALUE PARAMETER DESCRIPTION OF RETURN VALUE

 1 Baud Rate The actual baud rate, e.g. 115200.

 2 Data Bits 7, 8 or 9.

 3 Stop Bits 1 or 2.

 4 Parity 0None,
1Odd,
2Even.

 5 Physical Mode 0RS-232,
1RS-422 Master,
2RS-422 Slave,
3RS-485.

This function is active.

int

Port2Parity = GetPortConfig(2, 4)

Chapter 2 Standard Functions Drawing No. LP1045

GetRealTag(index) Revision E

 126 Reference Guide

ARGUMENT TYPE DESCRIPTION

index int Tag index number.

Returns the value of the real tag specified by index. The index can be found from the tag label using

the function FindTagIndex(). This function will work only if the tag is a real.

This function is active.

float

Value = GetRealTag(10)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetQueryStatus(Query)

Reference Guide 127

ARGUMENT TYPE DESCRIPTION

query string The name of the query, as found on the SQL Manager tree.

Retrieves the last time that the given query attempted.

 VALUE STATE DESCRIPTION

 0 Pending The status of the query is in an undeterminate state. Either the query has yet to
execute or it is actively executing.

 1 Success The query successfully executed and retrieved data for all columns.

 2 Partial

Data

The query retrieved some data, but not for all the columns. Verify that the configured
column type matches the actual type of the column in the SQL database..

 3 Failure The query failed to retrieve any data..

This function is passive.

int

Status := GetQueryStatus("Query1")

Chapter 2 Standard Functions Drawing No. LP1045

GetQueryTime(Query) Revision E

 128 Reference Guide

ARGUMENT TYPE DESCRIPTION

query string The name of the query, as found on the SQL Manager tree.

Retrieves the last time that the given query attempted to execute. If the query has not executed as
expected, verify that the SQL Manager is connected and that the network is configured properly.

This function is passive.

int

Time := GetQueryTime("Query1")

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetRestartCode(n)

Reference Guide 129

ARGUMENT TYPE DESCRIPTION

n int The entry in the restart table, from 0 to 6 inclusive.

Returns the Guru Meditation Code corresponding to the specified restart.

This function is passive.

cstring

Chapter 2 Standard Functions Drawing No. LP1045

GetRestartInfo(n) Revision E

 130 Reference Guide

ARGUMENT TYPE DESCRIPTION

n int The entry in the restart table, from 0 to 6 inclusive.

Returns an extended description of the specified restart, complete with time and date stamp.

This function is passive.

cstring

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetRestartText(n)

Reference Guide 131

ARGUMENT TYPE DESCRIPTION

n int The entry in the restart table, from 0 to 6 inclusive.

Returns an extended description of the specified restart, without a time and date stamp.

This function is passive.

cstring

Chapter 2 Standard Functions Drawing No. LP1045

GetRestartTime(n) Revision E

 132 Reference Guide

ARGUMENT TYPE DESCRIPTION

n int The entry in the restart table, from 0 to 6 inclusive.

Returns the time at which the specified restart occurred. Not defined for all situations.

This function is passive.

int

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetSQLConnectionStatus()

Reference Guide 133

ARGUMENT TYPE DESCRIPTION

none

Retrieves the status of the SQL Manager connection.

 VALUE STATE DESCRIPTION

 0 Pending The status of the SQL Manager connection is in an indeterminate state. This is because
the manage has yet to run, the manager is actively querying data, of the manager is
disabled.

 1 Success The manager successfully opened a connection with the SQL server.

 2 Failure The manager failed to open a connection with the remote SQL server. Verify that the
network is configured correctly and that the login credentials are correct.

This function is passive.

int

Status := GetSQLConnectionStatus()

Chapter 2 Standard Functions Drawing No. LP1045

GetStringTag(index) Revision E

 134 Reference Guide

ARGUMENT TYPE DESCRIPTION

index int Tag index number.

Returns the value of the string tag specified by index. The index can be found from the tag label using

the function FindTagIndex(). This function will work only if the tag is a string.

This function is active.

cstring

Value = GetStringTag(10)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetTagLabel(index)

Reference Guide 135

ARGUMENT TYPE DESCRIPTION

index int Tag index number.

Returns the label of the tag specified by index.

This function is active.

cstring

Label = GetTagLabel(10)

Chapter 2 Standard Functions Drawing No. LP1045

GetUpDownData(data, limit) Revision E

 136 Reference Guide

ARGUMENT TYPE DESCRIPTION

data int A steadily increasing source value.

limit int The number of values to generate.

This function takes a steadily increasing value and converts it to a value that oscillates between 0 and
limit–1. It is typically used within a demonstration database to generate realistic looking animation,

often by passing DispCount as the data parameter so that the resulting value changes on each display
update. If the GetUpDownStep function is called with the same arguments, it will return a value indicating

the direction of change of the data returned by GetUpDownData.

This function is passive.

int

Data = GetUpDownData(DispCount, 100)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetUpDownStep(data, limit)

Reference Guide 137

ARGUMENT TYPE DESCRIPTION

data int A steadily increasing source value.

limit int The number of values to generate.

See GetUpDownData for a description of this function.

This function is passive.

int

Delta = GetUpDownStep(DispCount, 100)

Chapter 2 Standard Functions Drawing No. LP1045

GetVersionInfo(code) Revision E

 138 Reference Guide

ARGUMENT TYPE DESCRIPTION

code int The item to be returned.

Returns information about the various version numbers, as follows:

 CODE DESCRIPTION

 1 Returns the boot loader version.

 2 Returns the build of the runtime software.

 3 Returns the build of configuration software used to prepare the current database.

This function is passive.

int

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetWebParamHex(param)

Reference Guide 139

ARGUMENT TYPE DESCRIPTION

param cstring The parameter to retrieve.

Gets a parameter passed to custom web page through the URL query string. The parameter is
interpreted as a hexadecimal integer and then returned. This function is typically used in code invokes via
the embedded tag syntax of the custom website.

This function is passive.

int

Value1 = GetWebParamHex("Count");

Chapter 2 Standard Functions Drawing No. LP1045

GetWebParamInt(param) Revision E

 140 Reference Guide

ARGUMENT TYPE DESCRIPTION

param cstring The parameter to retrieve.

Gets a parameter passed to custom web page through the URL query string. The parameter is
interpreted as a decimal integer and then returned. This function is typically used in code invokes via the
embedded tag syntax of the custom website.

This function is passive.

int

Value1 = GetWebParamInt("Count")

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GetWebParamString(param)

Reference Guide 141

ARGUMENT TYPE DESCRIPTION

param cstring The parameter to retrieve.

Gets a parameter passed to custom web page through the URL query string. The parameter is returned
as a string containing the characters passed in the parameter.

This function is passive.

cstring

Value1 = GetWebParamHex("Test")

Chapter 2 Standard Functions Drawing No. LP1045

GotoNext() Revision E

 142 Reference Guide

ARGUMENT TYPE DESCRIPTION

none

Causes the panel to move forward again in the page history buffer, reversing the result of a previous
call to GotoPrevious(). The portion of the history buffer accessible via this function will be cleared if the

GotoPage() function is called.

This function is active.

This function does not return a value.

GotoNext()

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GotoPage(name)

Reference Guide 143

ARGUMENT TYPE DESCRIPTION

name Display Page The page to be displayed.

Selects page name to be shown on the Crimson device’s display.

This function is active.

This function does not return a value.

GotoPage(Page1)

Chapter 2 Standard Functions Drawing No. LP1045

GotoPrevious() Revision E

 144 Reference Guide

ARGUMENT TYPE DESCRIPTION

none

Instructs the panel to return to the last page shown on the Crimson device’s display. The page is
extracted from a history buffer, so “previous” refers to the previously displayed page, not the previous
page in the Display Page navigation window.

This function is active.

This function does not return a value.

GotoPrevious()

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E GreaterEqR64(a, b)

Reference Guide 145

ARGUMENT TYPE DESCRIPTION

a int The value to be compared.

b int The value to compare to.

Compares the value of a to b using 64-bit double precision floating point math and returns 1 if a is
greater than or equal to b, and 0 otherwise. This is the double precision equivalent of a >= b. The input
operands a and b should be obtained from one of the 64-bit conversion functions provided or from a
driver that can read double precision values. All arguments to this function must be integer arrays with
lengths of 2. An in-depth example is provided in the entry for AddR64.

This function is passive.

int

Result = GreaterEqR64(a[0], b[0])

Chapter 2 Standard Functions Drawing No. LP1045

GreaterR64(a, b) Revision E

 146 Reference Guide

ARGUMENT TYPE DESCRIPTION

a int The value to be compared.

b int The value to compare to.

Compares the value of a to b using 64-bit double precision floating point math and returns 1 if a is
greater than b, and 0 otherwise. This is the double precision equivalent of a > b. The input operands a and
b should be obtained from one of the 64-bit conversion functions provided or from a driver that can read
double precision values. All arguments to this function must be integer arrays with lengths of 2. An in-
depth example is provided in the entry for AddR64.

This function is passive.

int

Result = GreaterR64(a[0], b[0])

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E HasAccess (rights)

Reference Guide 147

ARGUMENT TYPE DESCRIPTION

rights int The required access rights.

Returns a value of true or false depending on whether the current user has access rights defined by the
rights parameter. This parameter contains a bitmask representing the various userdefined rights, with
bit 0 (i.e., the bit with a value of 0x01) representing User Right 1, bit 1 (i.e., the bit with a value of 0x02)
representing User Right 2 and so on. The function is typically used in programs that perform actions that
might be subject to security.

This function is passive.

int

if(HasAccess(1)) {

Data1 = 0;

Data2 = 0;

Data3 = 0;

}

Chapter 2 Standard Functions Drawing No. LP1045

HasAllAccess(rights) Revision E

 148 Reference Guide

ARGUMENT TYPE DESCRIPTION

rights int The required access rights.

Returns a value of true or false depending on whether the current user has all the access rights defined
by the rights parameter. This parameter contains a bitmask representing the various userdefined rights,
with bit 0 (i.e., the bit with a value of 0x01) representing User Right 1, bit 1 (i.e., the bit with a value of
0x02) representing User Right 2 and so on. The function is typically used in programs that perform
actions that might be subject to security.

This function is passive.

int

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E HideAllPopups()

Reference Guide 149

ARGUMENT TYPE DESCRIPTION

none

Hides any popups, including nested popups, shown by ShowPopup() or ShowNested().

This function is active.

This function does not return a value.

Chapter 2 Standard Functions Drawing No. LP1045

HidePopup() Revision E

 150 Reference Guide

ARGUMENT TYPE DESCRIPTION

none

Hides the popup that was previously shown using ShowPopup.

This function is active.

This function does not return a value.

HidePopup()

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E IncR64(result, tag)

Reference Guide 151

ARGUMENT TYPE DESCRIPTION

result int The result.

tag int The value to be processed.

Increments the value of tag by one using 64-bit double precision floating point math and stores the

result in result. This is the double precision equivalent of the ++ operator. The input operand tag should
be obtained from one of the 64-bit conversion functions provided or from a driver that can read double
precision values. All arguments to this function must be integer arrays with lengths of 2. An in-depth
example is provided in the entry for AddR64.

This function is active.

void

IncR64(result[0], tag[0])

Chapter 2 Standard Functions Drawing No. LP1045

IntToR64(result, n) Revision E

 152 Reference Guide

ARGUMENT TYPE DESCRIPTION

result int The result.

n int The value to be converted.

Converts the value stored in n from an integer to a 64-bit double precision number and stores the result

in result. The tag result should be an entry in an integer array with an extent such that at least two
registers can be accessed from that point. After execution of this function, the value stored in result is
suitable for use in other 64-bit math functions. See the entry for AddR64 for an example of the intended
use of this function.

This function is active.

void

IntToR64(result[0], n)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E IntToText(data, radix, count)

Reference Guide 153

ARGUMENT TYPE DESCRIPTION

data int The value to be processed.

radix int The number base to be used.

count int The number of digits to generate.

Returns the string obtained by formatting data in base radix, generating count digits. The value is
assumed to be unsigned, so if a signed value is required, use Sgn to decide whether to prefix a negative

sign and then use Abs to pass the absolute value to IntToText.

This function is passive.

cstring

PortPrint(1, IntToText(Value, 10, 4))

Chapter 2 Standard Functions Drawing No. LP1045

IsBatchNameValid(name) Revision E

 154 Reference Guide

ARGUMENT TYPE DESCRIPTION

name cstring The batch name to be tested.

Returns true if the specified batch name contains valid characters, and does not already exist.

This function is active.

int

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E IsBatteryLow()

Reference Guide 155

ARGUMENT TYPE DESCRIPTION

none

Returns true if the unit’s internal battery is low.

This function is passive.

int

Chapter 2 Standard Functions Drawing No. LP1045

IsDeviceOnline(device) Revision E

 156 Reference Guide

ARGUMENT TYPE DESCRIPTION

device int The index of the device to be checked.

Reports if device device is online or not. A device is marked as offline if a repeated sequence of
communications errors have occurred. When a device is in the offline state, it will be polled periodically to
see if has returned online.

This function is passive.

int

Okay = IsDeviceOnline(1)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E IsLoggingActive()

Reference Guide 157

ARGUMENT TYPE DESCRIPTION

none

Returns true or false, indicating whether data logging is active in the current database. A value of true
indicates that a log has been defined, and that the log contains at least one data tag.

This function is passive.

int

Chapter 2 Standard Functions Drawing No. LP1045

IsPortRemote(port) Revision E

 158 Reference Guide

ARGUMENT TYPE DESCRIPTION

port int The communications port to be queried.

Returns true if the specified port has been taken over via port sharing.

This function is passive.

int

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E IsSQLSyncRunning()

Reference Guide 159

ARGUMENT TYPE DESCRIPTION

none

Returns whether the SQL Sync Service is currently attempting to synchronize with an SQL Server.

 VALUE STATE DESCRIPTION

 0 Not Running The SQL Sync Service is not synchronizing with an SQL server.

 1 Running The service is currently synchronizing with an SQL server.

This function is passive.

int

IsRunning = IsSQLSyncRunning()

Chapter 2 Standard Functions Drawing No. LP1045

IsWriteQueueEmpty(dev) Revision E

 160 Reference Guide

ARGUMENT TYPE DESCRIPTION

dev int The device number for which to get the queue state.

Returns the state of the write queue for the device identified with the argument dev. The function will
return true if the queue is empty, false otherwise. The device number can be identified in Crimson’s
status bar when a device is selected in Communication. Note that if a communication error occurs while
the write queue is not empty, or if data is written during a such an error, the queue will be emptied but
the data to be written will remain pending. The pending data will be written once the communication
error is cleared. Therefore, this function cannot be used to reliably determine if a device has pending
writes when communication errors are present on the device.

This function is passive.

int

QueueEmpty = IsWriteQueueEmpty(1)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E KillDirectory(name)

Reference Guide 161

ARGUMENT TYPE DESCRIPTION

name cstring The directory to be deleted.

Deletes the specified directory and any subdirectories or files that it contains; returns true if the
function is successful or false if the function fails.

This function is active.

int

Chapter 2 Standard Functions Drawing No. LP1045

Left(string, count) Revision E

 162 Reference Guide

ARGUMENT TYPE DESCRIPTION

string cstring The string to be processed.

count int The number of characters to return.

Returns the first count characters from string.

This function is passive.

cstring

AreaCode = Left(Phone, 3)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E Len(string)

Reference Guide 163

ARGUMENT TYPE DESCRIPTION

string cstring The string to be processed.

Returns the number of characters in string.

This function is passive.

int

Size = Len(Input)

Chapter 2 Standard Functions Drawing No. LP1045

LessEqR64(a, b) Revision E

 164 Reference Guide

ARGUMENT TYPE DESCRIPTION

a int The value to be compared.

b int The value to compare to.

Compares the value of a to b using 64-bit double precision floating point math and returns 1 if a is less
than or equal to b, and 0 otherwise. This is the double precision equivalent of a <= b. The input operands
a and b should be obtained from one of the 64-bit conversion functions provided or from a driver that can
read double precision values. All arguments to this function must be integer arrays with lengths of 2. An
in-depth example is provided in the entry for AddR64.

This function is passive.

int

Result = LessEqR64(a[0], b[0])

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E LessR64(a, b)

Reference Guide 165

ARGUMENT TYPE DESCRIPTION

a int The value to be compared.

b int The value to compare to.

Compares the value of a to b using 64-bit double precision floating point math and returns 1 if a is less
than b, and 0 otherwise. This is the double precision equivalent of a < b. The input operands a and b
should be obtained from one of the 64-bit conversion functions provided or from a driver that can read
double precision values. All arguments to this function must be integer arrays with lengths of 2. An in-
depth example is provided in the entry for AddR64.

This function is passive.

int

LessR64(a[0], b[0])

Chapter 2 Standard Functions Drawing No. LP1045

LoadCameraSetup(port, camera, index, file) Revision E

 166 Reference Guide

ARGUMENT TYPE DESCRIPTION

port int The port number where the camera is connected.

camera int The camera device number.

index int The inspection file number in the camera.

file cstring The path and filename for the inspection file.

This function loads the inspection file from the Crimson device memory card to the camera memory.
The number to be placed in the port argument is the port number to which the driver is bound. The
argument camera is the device number shown in the Crimson 3.1 status bar when the camera is selected.

More than one camera can be connected under a single driver. The index represents the inspection file

number within the camera where the file will be loaded in. The file is the path and filename for the
source inspection file on the memory card. This function will return true if the transfer is successful, false
otherwise. Note that this function is best called in a user program that runs in the background so the HMI
has enough time to access the memory card.

This function is active.

int

Success = LoadCameraSetup(4, 0, 1, “in0.isp”)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E LoadSecurityDatabase(mode, file)

Reference Guide 167

ARGUMENT TYPE DESCRIPTION

mode int The file format to be used.

file cstring The file to hold the database.

Loads the database’s security database from the specified file. A mode value of 1 is used to save and
load the user list, complete with user names, real names, and passwords. In each case, the file is
encrypted and will not contain clear-text passwords.

The return value is true for success, and false for failure.

This function is active.

int

Chapter 2 Standard Functions Drawing No. LP1045

Log(value) Revision E

 168 Reference Guide

ARGUMENT TYPE DESCRIPTION

value float The value to be processed.

Returns the natural log of value.

This function is passive.

float

Variable1 = log(5.0)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E Log10(value)

Reference Guide 169

ARGUMENT TYPE DESCRIPTION

value float The value to be processed.

Returns the base-10 log of value.

This function is passive.

float

Variable3 = log10(5.0)

Chapter 2 Standard Functions Drawing No. LP1045

Log10R64(result, tag) Revision E

 170 Reference Guide

ARGUMENT TYPE DESCRIPTION

result int The result

tag int The value to be processed.

Calculates the base-10 logarithm of tag using 64-bit double precision floating point math and stores the
result in result. The input operand tag should be obtained from one of the 64bit conversion functions
provided or from a driver that can read double precision values. All arguments to this function must be
integer arrays with lengths of 2. An in-depth example is provided in the entry for AddR64.

This function is active.

void

Log10R64(result[0], tag1[0])

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E LogBatchComment(set, text)

Reference Guide 171

ARGUMENT TYPE DESCRIPTION

set int The batch set number.

text cstring The comment to be logged.

Logs a comment to all batches associated with the specified batch set.

This function is active.

This function does not return a value.

Chapter 2 Standard Functions Drawing No. LP1045

LogBatchHeader(set, text) Revision E

 172 Reference Guide

ARGUMENT TYPE DESCRIPTION

set int The batch set number.

text cstring The header to be logged.

Logs a header comment to all batches associated with the specified batch set. The call should be made
immediately after creating a new batch. The comments will always be placed ahead of any other data in
the file.

This function is active.

This function does not return a value.

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E LogComment(log, text)

Reference Guide 173

ARGUMENT TYPE DESCRIPTION

log int The index of the log to be accessed.

text cstring The textual comment to be added to the log.

Adds a comment to a data log. The data log must be configured to support comments via the
appropriate property. Comments can be used to provide batch or other details at the start of a log, or to
allow the operator to mark a point of interest during the logging process.

This function is active.

int

LogComment(1, “Start of Shift”)

Chapter 2 Standard Functions Drawing No. LP1045

LogHeader(log, text) Revision E

 174 Reference Guide

ARGUMENT TYPE DESCRIPTION

log int The index or name of the log.

text cstring The comment to be logged.

Records a comment in the specified log file. Comments must be enabled for the log in question.

This function is active.

This function does not return a value.

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E logR64(result, tag)

Reference Guide 175

ARGUMENT TYPE DESCRIPTION

result int The result.

tag int The value to be processed.

Calculates the natural logarithm of tag using 64-bit double precision floating point math and stores the
result in result. The input operand tag should be obtained from one of the 64-bit conversion functions
provided or from a driver that can read double precision values. All arguments to this function must be
integer arrays with lengths of 2. An in-depth example is provided in the entry for AddR64.

This function is active.

void

logR64(result[0], tag[0])

Chapter 2 Standard Functions Drawing No. LP1045

LogSave() Revision E

 176 Reference Guide

ARGUMENT TYPE DESCRIPTION

none

Forces the data logger to save on the memory card. Note that this function should not be called
periodically. It is intended only for punctual use. An overuse of this function may result in memory card
damage and loss of data.

This function is passive.

This function does not return a value.

LogSave()

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E MakeFloat(value)

Reference Guide 177

ARGUMENT TYPE DESCRIPTION

value int The value to be converted.

Reinterprets the integer argument as a floating-point value. This function does not perform a type
conversion, but instead takes the bit pattern stored in the argument, and assumes that rather than
representing an integer, it actually represents a floating-point value. It can be used to manipulate data
from a remote device that might actually have a different data type from that expected by the
communications driver.

This function is passive.

float

fp = MakeFloat(n)

Chapter 2 Standard Functions Drawing No. LP1045

MakeInt(value) Revision E

 178 Reference Guide

ARGUMENT TYPE DESCRIPTION

value float The value to be converted.

Reinterprets the floating-point argument as an integer. This function does not perform a type
conversion, but instead takes the bit pattern stored in the argument, and assumes that rather than
representing a floating-point value, it actually represents an integer. It can be used to manipulate data
from a remote device that might actually have a different data type from that expected by the
communications driver.

This function is passive.

int

n = MakeInt(fp)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E Max(a, b)

Reference Guide 179

ARGUMENT TYPE DESCRIPTION

a int / float The first value to be compared.

b int / float The second value to be compared.

Returns the larger of the two arguments.

This function is passive.

int or float, depending on the type of the arguments.

Larger = Max(Tank1, Tank2)

Chapter 2 Standard Functions Drawing No. LP1045

MaxR64(result, tag1, tag2) Revision E

 180 Reference Guide

ARGUMENT TYPE DESCRIPTION

result int The result.

tag1 int The first value to be compared.

tag2 int The second value to be compared.

Calculates the larger value of tag1 and tag2 using 64-bit double precision floating point math and stores
the result in result. The input operands tag1 and tag2 should be obtained from one of the 64-bit
conversion functions provided or from a driver that can read double precision values. All arguments to
this function must be integer arrays with lengths of 2. An in-depth example is provided in the entry for
AddR64.

This function is active.

void

MaxR64(result[0], tag1[0], tag2[0])

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E MaxU32(tag1, tag2)

Reference Guide 181

ARGUMENT TYPE DESCRIPTION

tag1 int The first value to be compared.

tag2 int The second value to be compared.

Returns the larger value of tag1 and tag2 in an unsigned context.

This function is passive.

int

Larger = MaxU32(tag1, tag2)

Chapter 2 Standard Functions Drawing No. LP1045

Mean(element, count) Revision E

 182 Reference Guide

ARGUMENT TYPE DESCRIPTION

element int/float The first array element to be processed.

count int The number of elements to be processed.

Returns the mean of the count array elements from element onwards.

This function is passive.

float

Average = Mean(Data[0], 10)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E Mid(string, pos, count)

Reference Guide 183

ARGUMENT TYPE DESCRIPTION

string cstring The string to be processed.

pos int The position at which to start.

count int The number of characters to return.

Returns count characters from position pos within string, where 0 is the first position.

This function is passive.

cstring

Exchange = Mid(Phone, 3, 3)

Chapter 2 Standard Functions Drawing No. LP1045

Min(a, b) Revision E

 184 Reference Guide

ARGUMENT TYPE DESCRIPTION

a int / float The first value to be compared.

b int / float The second value to be compared.

Returns the smaller of the two arguments.

This function is passive.

int or float, depending on the type of the arguments.

Smaller = Min(Tank1, Tank2)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E MinR64(result, tag1, tag2)

Reference Guide 185

ARGUMENT TYPE DESCRIPTION

result int The result.

tag1 int The first value to compare.

tag2 int The second value to compare.

Calculates the smaller value of tag1 and tag2 using 64-bit double precision floating point math and
stores the result in result. The input operands tag1 and tag2 should be obtained from one of the 64-bit
conversion functions provided or from a driver that can read double precision values. All arguments to
this function must be integer arrays with lengths of 2. An in-depth example is provided in the entry for
AddR64.

This function is active.

void

MinR64(result[0], tag1[0], tag2[0])

Chapter 2 Standard Functions Drawing No. LP1045

MinU32(tag1, tag2) Revision E

 186 Reference Guide

ARGUMENT TYPE DESCRIPTION

tag1 int The first value to be compared.

tag2 int The second value to be compared.

Returns the smaller value of tag1 and tag2 in an unsigned context.

This function is passive.

int

Smaller = MinU32(tag1, tag2)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E MinusR64(result, tag)

Reference Guide 187

ARGUMENT TYPE DESCRIPTION

result int The result.

tag int The value to be processed.

Inverts the sign of tag using 64-bit double precision floating point math and stores the result in result.
This function will cause positive numbers to become negative and negative numbers to become positive.
The input operand tag should be obtained from either one of the 64-bit conversion functions provided or
from a driver that can read double precision values. All arguments to this function must be integer arrays
with lengths of 2. An in-depth example is provided in the entry for AddR64.

This function is active.

void

MinusR64(result[0], tag[0])

Chapter 2 Standard Functions Drawing No. LP1045

ModU32(tag1, tag2) Revision E

 188 Reference Guide

ARGUMENT TYPE DESCRIPTION

tag1 int The dividend.

tag2 int The divisor.

Returns the value of tag1 modulo tag2 in an unsigned context. This is the unsigned equivalent of tag1 %
tag2, or the remainder of tag1 divided by tag2.

This function is MinU32(tag1, tag2).

 ARGUMENT TYPE DESCRIPTION

 tag1 int The first value to be compared.

 tag2 int The second value to be compared.

int

Result = ModU32(tag1, tag2)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E MountCompactFlash(enable)

Reference Guide 189

ARGUMENT TYPE DESCRIPTION

enable int The desired mount or dismount state.

Mounts or dismounts the memory card as a drive accessible from Windows Explorer. If enable is set to
1, then the card will be mounted. If enable is set to 0, then the card will be dismounted. The device will
restart itself automatically after calling this function. This function exposes the same functionality as the
Mount Flash and Dismount Flash options found under the Link menu in the Crimson 3.1 software.

This function is active.

void

MountCompactFlash(0)

Chapter 2 Standard Functions Drawing No. LP1045

MoveFiles(source, target, flags) Revision E

 190 Reference Guide

ARGUMENT TYPE DESCRIPTION

source cstring The path from which the files are to be moved.

target cstring The path to which the files are to be moved.

flags int The flags controlling the move operation.

Moves all the files in the source directory to the target directory.
The various bits in flags modify the move operation, as follows:

 BIT WEIGHT DESCRIPTION

 0 1 If set, the operation will recurse into any subdirectories.

 1 2 If set, existing files will be overwritten.
If clear, existing files will be left untouched.

The return value of the function will be true for success, or false for failure.

This function is active.

int

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E MulDiv(a, b, c)

Reference Guide 191

ARGUMENT TYPE DESCRIPTION

a int The first value.

b int The second value.

c int The third value.

Returns a*b/c. The intermediate math is done with 64-bit integers to avoid overflows.

This function is passive.

int

d = MulDiv(a, b, c)

Chapter 2 Standard Functions Drawing No. LP1045

MulR64(result, tag1, tag2) Revision E

 192 Reference Guide

ARGUMENT TYPE DESCRIPTION

result int The result.

tag1 int The multiplicand.

tag2 int The multiplier.

Calculates the value of tag1 times tag2 using 64-bit double precision floating point math and stores the
result in result. This is the double precision equivalent of tag1 * tag2. The input operands tag1 and tag2
should be obtained from one of the 64-bit conversion functions provided or from a driver that can read
double precision values. All arguments to this function must be integer arrays with lengths of 2. An in-
depth example is provided under AddR64.

This function is active.

void

MulR64(result[0], tag1[0], tag2[0])

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E MulU32(tag1, tag2)

Reference Guide 193

ARGUMENT TYPE DESCRIPTION

tag1 int The multiplicand tag.

tag2 int The multiplier tag.

Returns the value of tag1 times tag2 in an unsigned context.

This function is passive.

int

Result = MulU32(tag1, tag2)

Chapter 2 Standard Functions Drawing No. LP1045

MuteSiren() Revision E

 194 Reference Guide

ARGUMENT TYPE DESCRIPTION

none

Turns off the Crimson device’s internal siren.

This function is active.

This function does not return a value.

MuteSiren()

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E NetworkPing(address, timeout)

Reference Guide 195

ARGUMENT TYPE DESCRIPTION

address int The target address to send a ping request to.

timeout int The time in millisecond to wait for a response.

Sends an ICMP echo request (commonly referred to as a ping) to the specified IP address and waits for
the given timeout period for a reply. The timeout parameter should be given in milliseconds. If a valid
response is received within the timeout period, then the function will return 1. If no response is received
within the timeout period, or this function is called while the Ethernet port is disabled, then the function
will return 0.

This function is passive.

int

IP = TextToAddr("192.168.1.100");

Result = NetworkPing(IP, 5000);

IP = ResolveDNS("redlion.net");

Result = NetworkPing(IP, 5000);

Chapter 2 Standard Functions Drawing No. LP1045

NewBatch(name) Revision E

 196 Reference Guide

ARGUMENT TYPE DESCRIPTION

name cstring The name of the batch.

Starts a batch called name. The Crimson 3.1 filing system now supports both FAT16 and FAT32. If the
memory card has been formatted to use FAT32, then long filenames may be used. If the memory card has
been formatted using FAT16, then long filenames are not supported. Restarting a batch already on the
memory card will append the data. If a new batch exceeds the maximum number of batches to be kept,
the oldest batch will be deleted. If name is empty, the function is equivalent to EndBatch(). Batch status
is retained during a power cycle. Note that starting a new batch within less than 10 seconds of ending or
starting the last one will produce undefined behavior. To go straight from one batch to another, call
NewBatch() without an intervening call to EndBatch().

This function is passive.

This function does not return a value.

NewBatch(“ProdA”)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E Nop()

Reference Guide 197

ARGUMENT TYPE DESCRIPTION

none

This function does nothing.

This function is active.

This function does not return a value.

Nop()

Chapter 2 Standard Functions Drawing No. LP1045

NotEqualR64(a, b) Revision E

 198 Reference Guide

ARGUMENT TYPE DESCRIPTION

a int The first value to be compared.

b int The second value to be compared.

Compares the value of a against b using 64-bit double precision floating point math and returns 1 if a is
not equal to b, and 0 otherwise. This is the double precision equivalent of a!=b. Note that comparing
floating point values for equality can be error prone due to rounding errors. The input operands a and b
should be obtained from one of the 64-bit conversion functions provided or from a driver that can read
double precision values. All arguments to this function must be integer arrays with lengths of 2. An in-
depth example is provided in the entry for AddR64.

This function is passive.

int

NotEqualR64(a[0], b[0])

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E OpenFile(name, mode)

Reference Guide 199

ARGUMENT TYPE DESCRIPTION

name cstring The file to be opened.

mode int The mode in which the file is to be opened…
0 = Read Only
1 = Read/Write at Start of File
2 = Read/Write at End of File

Returns a handle to the file name located on the memory card. This function is restricted to a maximum
of four open files at any given time. The memory card cannot be unmounted while a file is open. The
Crimson 3.1 filing system now supports both FAT16 and FAT32. If the memory card has been formatted
to use FAT32, then long filenames may be used. If the memory card has been formatted using FAT16,
then long filenames are not supported. Note that if backslashes are included in the pathname to separate
path elements, they must be doubled-up per Crimson’s rules for string constants, as described in the
chapter on Writing Expressions within the Crimson 3.1 Software Guide. To avoid this complication,
forward slashes can be used in place of backslashes without the need for such doubling. Note also that
this function will not create a file that does not exist. To do this, call CreateFile() before calling this
function.

This function is active.

int

hFile = OpenFile(“/LOGS/LOG1/01010101.csv”, 0)

Chapter 2 Standard Functions Drawing No. LP1045

Pi() Revision E

 200 Reference Guide

ARGUMENT TYPE DESCRIPTION

none

Returns pi as a floating-point number.

This function is passive.

float

Scale = Pi()/180

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E PlayRTTTL(tune)

Reference Guide 201

ARGUMENT TYPE DESCRIPTION

tune cstring The tune to be played in RTTTL representation.

Plays a tune using the Crimson device’s internal beeper. The tune argument should contain the tune to
be played in RTTTL format—the format used by a number of cell phones for custom ring tones. Sample
tunes can be obtained from many sites on the World Wide Web.

This function is active.

This function does not return a value.

PlayRTTTL("TooSexy:d=4,o=5,b=40:16f,16g,16f,16g,16f.,16f,16g,16f,16g,16g#.,16g#,16g

,16g#,16g,

16f.,16f,16g,16f,16g,16f.,16f,16g,16f,16g,16f.,16f,16g,16f,16g,16g#.,16g#,16g,16g#,16

g,16f.,1 6f,16g,16f,16g,32f.")

Chapter 2 Standard Functions Drawing No. LP1045

PopDev(element, count) Revision E

 202 Reference Guide

ARGUMENT TYPE DESCRIPTION

element int / float The first array element to be processed.

count int The number of elements to be processed.

Returns the standard deviation of the count array elements from element onwards, assuming the data
points to represent the whole of the population under study. If you need to find the standard deviation of
a sample, use the StdDev function instead.

This function is passive.

float

Dev = PopDev(Data[0], 10)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E PortClose(port)

Reference Guide 203

ARGUMENT TYPE DESCRIPTION

port int Closes the specified port.

This function is used in conjunction with the active or passive TCP raw port drivers to close the selected
port by gracefully closing the connection that is attached to the associated socket.

This function is active.

This function does not return a value.

PortClose(6)

Chapter 2 Standard Functions Drawing No. LP1045

PortGetCTS(port) Revision E

 204 Reference Guide

ARGUMENT TYPE DESCRIPTION

port int The raw port to get the CTS state from.

Returns state of the CTS line on the serial port indicated by port. The port must be configured to use a
raw driver. The communication port number can be identified in Crimson’s status bar when the port is
selected.

This function is active.

int

CtsState = PortGetCTS(2)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E PortInput(port, start, end, timeout, length)

Reference Guide 205

ARGUMENT TYPE DESCRIPTION

port int The raw port to be read.

start int The start character to match, if any.

end int The end character to match, if any.

timeout int The inter-character timeout in milliseconds, if any.

length int The maximum number of characters to read, if any.

Reads a string of characters from the port indicated by port, using the various other parameters to

control the input process. If start is non-zero, the process begins by waiting until the character indicated
by this parameter is received. If start is zero, the receive process begins immediately. The process then
continues until one of the following conditions is met…

 end is non-zero and a character matching end is received.

 timeout is non-zero, and that period passes with no characters received.

 length is non-zero, and that many characters have been received.

The function then returns the characters received, not including the start or end byte. In the event of
a timeout, the received characters will only be returned if both the end and length parameters are zero. If
either the end or length parameters are non-zero (or if both are non-zero), then the function will return an
empty string. This function is used together with raw port drivers to implement custom protocols using
Crimson’s programming language. It replaces the RYOP functionality found in Edict.

This function is active.

cstring

Frame = PortInput(1, '*', 13, 100, 200)

Chapter 2 Standard Functions Drawing No. LP1045

PortPrint(port, string) Revision E

 206 Reference Guide

ARGUMENT TYPE DESCRIPTION

port int The raw port to be written to.

string cstring The text string to be transmitted.

Transmits the text contained in string to the port indicated by port. The port must be configured to
use a raw driver, such as the raw serial port driver, or either of the raw TCP/IP drivers. The data will be
transmitted, and the function will return. The port driver will handle handshaking and control of
transmitter enable lines, as required.

This function is active.

This function does not return a value.

PortPrint(1, "ABCD")

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E PortPrintEx(port, string)

Reference Guide 207

ARGUMENT TYPE DESCRIPTION

port int The raw port to be written to.

string string string

Transmits the text contained in string to the port indicated by port. The port must be configured to
use a raw driver, such as the raw serial port driver, or either of the raw TCP/IP drivers. The data will be
transmitted, and the function will return. The port driver will handle handshaking and control of
transmitter enable lines, as required. Sending data over a TCP/IP raw port will attempt to send the data in
a single packet if possible, or using as few packets as possible.

This function is active.

This function does not return a value.

PortPrintEx(4, "ABCDEFGHIJKLMNOPQRSTUVWXYZ");

Chapter 2 Standard Functions Drawing No. LP1045

PortRead(port, period) Revision E

 208 Reference Guide

ARGUMENT TYPE DESCRIPTION

port int The raw port to be read.

period int The time to wait in milliseconds.

Attempts to read a character from the port indicated by port. The port must be configured to use a raw
driver, such as the raw serial port driver, or either of the raw TCP/IP drivers. If no data is available within
the indicated time period, a value of –1 will be returned. Setting period to zero will result in any queued
data being returned, but will prevent Crimson from waiting for data to arrive if none is available.

This function is active.

int

Data = PortRead(1, 100)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E PortSendData(port, data, count)

Reference Guide 209

ARGUMENT TYPE DESCRIPTION

port int The raw port to be written to.

data int The first element of the array of data to be sent.

count int The number of elements to send.

Transmits count number of elements of the array starting at data to the port indicated by port. The
port must be configured to use a raw driver, such as the raw serial port driver, or either of the raw TCP/IP
drivers. The data will be transmitted and the function will return. The port driver will handle handshaking
and control of transmitter enable lines, as required. Data sent over a TCP/IP raw port will be sent in a
single packet if possible. Each element in the data input array should represent one byte's worth of the
desired data to be sent. The elements in the array can be any value from 0 to 255, inclusive. This function
provides an alternative to the text-based PortPrint function, allowing for binary data to be sent.

This function is active.

This function does not return a value.

PortSendData(4, Data[0], 16);

Chapter 2 Standard Functions Drawing No. LP1045

PortSetRTS(port, state) Revision E

 210 Reference Guide

ARGUMENT TYPE DESCRIPTION

port int The raw port to control.

state int The state of the RTS, true (1) or false (0).

Sets the state of the RTS line on the serial port specified by port. The port must be configured to use a
raw driver and be on one of the serial ports. The state argument can take values 0 or 1, only. The port
number will be displayed in the Crimson 3.1 status bar when the port is selected.

This function is active.

This function does not return a value.

PortSetRTS(2, 1)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E PortWrite(port, data)

Reference Guide 211

ARGUMENT TYPE DESCRIPTION

port int The raw port to be written to.

data int The byte to be transmitted.

Transmits the byte indicated by data on the port indicated by port. The port must be configured to use
a raw driver, such as the raw serial port driver, or either of the raw TCP/IP drivers. The character will be
transmitted, and the function will return. The port driver will handle handshaking and control of
transmitter enable lines, as required.

This function is active.

This function does not return a value.

PortWrite(1, 'A')

Chapter 2 Standard Functions Drawing No. LP1045

PostKey(code, transition) Revision E

 212 Reference Guide

ARGUMENT TYPE DESCRIPTION

code int Key code.

transition int Transition code.

Adds a physical key operation to the input queue.

 CODE KEY CODE KEY

 0x80 Soft Key 1 0x95 Function Key 6

 0x81 Soft Key 2 0x96 Function Key 7

 0x82 Soft Key 3 0x97 Function Key 8

 0x83 Soft Key 4 0xA0 ALARMS

 0x84 Soft Key 5 0xA1 MUTE

 0x85 Soft Key 6 0x1B EXIT

 0x86 Soft Key 7 0xA2 MENU

 0x90 Function Key 1 0xA3 RAISE

 0x91 Function Key 2 0xA4 LOWER

 0x92 Function Key 3 0x09 NEXT

 0x93 Function Key 4 0x08 PREV

 0x94 Function Key 5 0x0D ENTER

 TRANSITION OPERATION

 0 Post key down and then key up.

 1 Post key down only.

 2 Post key up only.

 3 Post key repeat only.

This function is active.

void

PostKey(0x80, 0)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E Power(value, power)

Reference Guide 213

ARGUMENT TYPE DESCRIPTION

value int / float The value to be processed.

power int / float The power to which value is to be raised.

Returns value raised to the power of power.

This function is passive.

int or float, depending on the type of the value argument.

Volume = Power(Length, 3)

Chapter 2 Standard Functions Drawing No. LP1045

PowR64(result, value, power) Revision E

 214 Reference Guide

ARGUMENT TYPE DESCRIPTION

result int The result.

value int The value to be processed.

power int The power to which value will be raised.

Calculates the value of value raised to the power of power using 64-bit double precision floating point
math and stores the result in result. The input operands value and power should be obtained from one of
the 64-bit conversion functions provided or from a driver that can read double precision values. All
arguments to this function must be integer arrays with lengths of 2. An in-depth example is provided in
the entry for AddR64.

This function is active.

void

PowR64(result[0], tag1[0], tag2[0])

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E PrintScreenToFile(path, name, res)

Reference Guide 215

ARGUMENT TYPE DESCRIPTION

path cstring The directory in which the file should be created.

name cstring The filename to be used.

res int The required color resolution of the image.

Saves a bitmap copy of the current display to the indicated file. Passing an empty string for name will
allow Crimson to select a unique filename for the new image. The res argument can be set to one to
create an 8 bits-per-pixel bitmap, while a value of zero will create a 16 bits-per-pixel bitmap. The latter
value will produce much larger files, as these files are not capable of supporting RLE8 compression. The
return value indicates whether the function succeeded.

This function is active.

int

Chapter 2 Standard Functions Drawing No. LP1045

PutFileByte(file, data) Revision E

 216 Reference Guide

ARGUMENT TYPE DESCRIPTION

file int The file handle as returned by OpenFile.

data int The data value to be written.

Writes a single byte to the specified file. Returns 1 for success and -1 for failure.

This function is active.

int

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E PutFileData(file, data, length)

Reference Guide 217

ARGUMENT TYPE DESCRIPTION

file int The file handle as returned by OpenFile.

data int The first array element to be written.

length int The number of elements to be processed.

Writes the specific number of bytes to the file, taking one byte from each array element.
The return value is the number of bytes written, and may be less than length.

This function is active.

int

Chapter 2 Standard Functions Drawing No. LP1045

R64ToInt(x) Revision E

 218 Reference Guide

ARGUMENT TYPE DESCRIPTION

x int The value to be converted.

Converts the 64-bit double precision floating point value stored in x as an array with extent 2 to a
signed integer and returns the result. Typically, the array x will contain a 64-bit floating point value
obtained as a result from one of the 64-bit math functions provided. Note that if the number represented
by the array x must be able to be represented by 32-bit integer for this conversion to be successful. See
the entry for AddR64 for more information.

This function is passive.

int

Result = R64ToInt(x[0])

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E R64ToReal(x)

Reference Guide 219

ARGUMENT TYPE DESCRIPTION

x int The value to be converted.

Converts the 64-bit double precision floating point value stored as an array with extent 2 in x to a 32-
bit floating point number and returns the result. Typically, the array x will contain a 64-bit floating point
value obtained as a result from one of the 64-bit math functions provided. Note that the number
represented by the array x must be able to be represented by a 32-bit floating point number for this
conversion to be successful. See the entry for AddR64 for an example of the use of 64-bit math functions.

This function is passive.

float

Result = R64ToReal(x[0])

Chapter 2 Standard Functions Drawing No. LP1045

Rad2Deg(theta) Revision E

 220 Reference Guide

ARGUMENT TYPE DESCRIPTION

theta float The angle to be processed.

Returns theta converted from radians to degrees.

This function is passive.

float

Right = Rad2Deg(Pi()/2)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E Random(range)

Reference Guide 221

ARGUMENT TYPE DESCRIPTION

range int The range of random values to produce.

Returns a pseudo-random value between 0 and range-1.

This function is passive.

int

Noise = Random(100)

Chapter 2 Standard Functions Drawing No. LP1045

ReadData(data, count) Revision E

 222 Reference Guide

ARGUMENT TYPE DESCRIPTION

data any The first array element to be read.

count int The number of elements to be read.

Requests that count elements from array element data onwards to read on the next comms scan. This
function is used with arrays that have been mapped to external data, and which have their read policy set
to Read Manually. The function returns immediately, and does not wait for the data to be read.

This function is active.

This function does not return a value.

ReadData(array1[8], 10)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E ReadFile(file, chars)

Reference Guide 223

ARGUMENT TYPE DESCRIPTION

file int The file handle as required by OpenFile.

chars int The number of characters to be read.

Reads a string up to 512 characters in length from the specified file. This function does not look for a
line feed or carriage return, but instead reads a specified number of bytes. The string returned by
ReadFile() will be as many lines as required to reach the number of characters to be read. Line feed and
carriage return will be part of the returned string.

This function is active.

string

Text = ReadFile(hFile, 80)

Chapter 2 Standard Functions Drawing No. LP1045

ReadFileLine(file) Revision E

 224 Reference Guide

ARGUMENT TYPE DESCRIPTION

file int The file handle as returned by OpenFile.

Returns a single line of text from file.

This function is active.

cstring

Text = ReadFileLine(hFile)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E RealToR64(result, n)

Reference Guide 225

ARGUMENT TYPE DESCRIPTION

result int The result.

n float The value to be converted.

Converts the value stored in n from a real number to a 64-bit double precision number and stores the
result as an array of length 2 in result. The tag result should therefore be an integer array with an extent of
at least 2. After execution of this function, the value stored in result is suitable for use in other 64-bit
math functions. See the entry for AddR64 for an example of the intended use of this function.

This function is active.

void

RealToR64(result[0], n)

Chapter 2 Standard Functions Drawing No. LP1045

RenameFile(handle, name) Revision E

 226 Reference Guide

ARGUMENT TYPE DESCRIPTION

handle int The file handle.

name cstring The new file name.

Returns a non-zero value upon a successful rename file operation. The file handle is the returned value
of the Openfile() function. After the rename operation, the file stays open and should be closed if no
further operations are required. The file name is maximum 8 characters long, excluding the extension,
which is 3 characters long maximum.

This function is active.

int

Result = RenameFile(File , “NewName.txt”)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E ResolveDNS(name)

Reference Guide 227

ARGUMENT TYPE DESCRIPTION

name cstring The DNS name to be resolved.

Returns the IP address of the specified DNS name.

This function is passive.

int

ip = ResolveDNS(“www.redlion.net”)

Chapter 2 Standard Functions Drawing No. LP1045

Right(string, count) Revision E

 228 Reference Guide

ARGUMENT TYPE DESCRIPTION

string cstring The string to be processed.

count int The number of characters to return.

Returns the last count characters from string.

This function is passive.

cstring

Local = Right(Phone, 7)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E RShU32(tag1, tag2)

Reference Guide 229

ARGUMENT TYPE DESCRIPTION

tag1 int The value to be shifted.

tag2 int The amount to shift by.

Returns the value tag1 shifted tag2 bits to the right in an unsigned context.
This is the unsigned equivalent to tag1 >> tag2.

This function is passive.

int

Shifted = RShU32(tag1, tag2)

Chapter 2 Standard Functions Drawing No. LP1045

RunAllQueries() Revision E

 230 Reference Guide

ARGUMENT TYPE DESCRIPTION

none

Instructs the SQL Manager to run all configured queries.

This function is active.

This function does not return a value.

RunAllQueries()

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E RunQuery(query)

Reference Guide 231

ARGUMENT TYPE DESCRIPTION

query string The name of the query, as found on the SQL Manager tree.

Instructs the SQL Manager to run the specified query.

This function is active.

This function does not return a value.

RunQuery("Query1")

Chapter 2 Standard Functions Drawing No. LP1045

RxCAN(port, data, id) Revision E

 232 Reference Guide

ARGUMENT TYPE DESCRIPTION

port int The raw CAN port

data int The first array element to hold received data.

id int 29-bit CAN Identifier.

Retrieves received CAN messages that have been initialized with RxCANInit. The first four bytes of the
received message will be packed (big endian) in the indicated array element while remaining bytes (if any)
will be stored (big endian) in the next consecutive element of the array. Returns a value of 1 upon success
or 0 upon failure.

This function is active.

int

RxCAN(8, Data, 0x12345678)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E RxCANInit(port, id, dlc)

Reference Guide 233

ARGUMENT TYPE DESCRIPTION

port int The raw CAN port.

id int 29-bit CAN Identifier.

dlc int Data Length Count of 1 – 8 bytes.

Initializes the programmatic transfer of CAN messages via a CAN Option Card. The function will return
a value of 1 upon success or a value of 0 upon failure. Calls should be made only after the system has
started, and each 29-bit identifier should only be initialized only one time.

This function is active.

int

RxCANInit(8, 0x12345678, 8)

Chapter 2 Standard Functions Drawing No. LP1045

SaveCameraSetup(port, camera, index, file) Revision E

 234 Reference Guide

ARGUMENT TYPE DESCRIPTION

port int The port number where the camera is connected.

camera int The camera device number.

index int The inspection file number in the camera.

file cstring The path and filename for the inspection file.

Note that this function saves the inspection file uploaded from the camera on the Crimson device
memory card. The number to be placed in the port argument is the port number to which the driver is
bound. The argument camera is the device number displayed in the Crimson 3.1 status bar when the

camera is selected. More than one camera can be connected under a single driver. The index represents

the inspection file number within the camera. The file is the path and filename where the inspection file
should be saved on memory card. This function will return true if the transfer is successful and false
otherwise. This function should be called in a user program that runs in the background so the HMI has
enough time to access the memory card.

This function is active.

int

Success = SaveCameraSetup(4, 0, 1, “\\in0.isp”)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E SaveConfigFile(file)

Reference Guide 235

ARGUMENT TYPE DESCRIPTION

file cstring The image file to which to write.

Save the current boot loader, firmware and database image to a CI3 file for subsequent transfer to
another device. Note that image files created in this manner will only contain the firmware for the exact
hardware model on which they were created, and may not operate with similar but non-identical devices.
The return value is true for success, and false for failure.

This function is active.

int

SaveConfigFile(“image.ci3”)

Chapter 2 Standard Functions Drawing No. LP1045

SaveSecurityDatabase(mode, file) Revision E

 236 Reference Guide

ARGUMENT TYPE DESCRIPTION

mode int The file format to be used.

file cstring The file to hold the database.

Saves the database’s security database from the specified file. A mode value of 0 is used to save and
subsequently load only the password associated with each user. A mode value of 1 is used to save and
load the entire user list, complete with user names, real names and passwords. In each case, the file is
encrypted and will not contain clear-text passwords. The return value is true for success, and false for
failure.

int

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E Scale(data, r1, r2, e1, e2)

Reference Guide 237

ARGUMENT TYPE DESCRIPTION

data int The value to be scaled.

r1 int The minimum raw value stored in data.

r2 int The maximum raw value stored in data.

e1 int The engineering value corresponding to r1.

e2 int The engineering value corresponding to r2.

This function linearly scales the data argument, assuming it to contain values between r1 and r2, and

producing a return value between e1 and e2. The internal math is implemented using 64bit integers,
thereby avoiding the overflows that might result if you attempted to scale very large values using
Crimson’s own math operators.

This function is passive.

int

Data = Scale([D100], 0, 4095, 0, 99999)

Chapter 2 Standard Functions Drawing No. LP1045

SendFile(rcpt, file) Revision E

 238 Reference Guide

ARGUMENT TYPE DESCRIPTION

rcpt int The recipient’s index in the database’s address book.

file cstring The path and file name to be sent.

Sends an email from the Crimson device with the file specified attached. The function returns
immediately, having first added the required email to the system’s mail queue. The message will be sent
using the appropriate mail transport as configured in the database.

This function is passive.

This function does not return a value.

SendFile(0, “/LOGS/LOG1/260706.csv”)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E SendFileEx(rcpt, file, subject, flag)

Reference Guide 239

ARGUMENT TYPE DESCRIPTION

rcpt int The recipient’s index in the database’s address book.

file cstring The path and file name to be sent.

subject cstring The subject of the email.

flag int Not used. Should be set to zero.

Sends an email from the Crimson device with the file specified attached, and with the specified subject
line. The function returns immediately, having first added the required email to the system’s mail queue.
The message will be sent using the appropriate mail transport as configured in the database.

This function is passive.

This function does not return a value.

SendFileEx(0, “/LOGS/LOG1/260706.csv”, “Test Email”, 0)

Chapter 2 Standard Functions Drawing No. LP1045

SendMail(rcpt, subject, body) Revision E

 240 Reference Guide

ARGUMENT TYPE DESCRIPTION

rcpt int The recipient’s index in the database’s address book.

subject cstring The required subject line for the email.

body cstring The required body text of the email.

Sends an email from the Crimson device. The function returns immediately, having first added the
required email to the system’s mail queue. The message will be sent using the appropriate mail transport
as configured in the database.

Note: The first recipient is 0.

This function is active.

This function does not return a value.

SendMail(1, “Test Subject Line”, “Test Body Text”)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E Set(tag, value)

Reference Guide 241

ARGUMENT TYPE DESCRIPTION

tag int/float The tag to be changed.

value int/float The value to be assigned.

This function sets the specified tag to the specified value. It differs from the more normally used
assignment operator in that it deletes any queued writes to this tag and replaces them with an immediate
write of the specified value. It is thus used in situations where Crimson’s normal write behavior is not
required.

This function is active.

This function does not return a value.

Set(Tag1, 100)

Chapter 2 Standard Functions Drawing No. LP1045

SetIconLed(id, state) Revision E

 242 Reference Guide

ARGUMENT TYPE DESCRIPTION

id int The icon LED ID enumeration.

state int The icon LED state.

This function sets the state of the specified icon LED to the required state, as follows:

ID LED

1 Alarm

2 Orb

3 Home

This function is passive.

This function does not return a value.

SetIconLed(1, 0)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E SetIntTag(index, value)

Reference Guide 243

ARGUMENT TYPE DESCRIPTION

index int Tag index number.

value int The vlalue to be assigned.

This function sets the tag specified by index to the specified value. The index can be found from the

tag label using the function FindTagIndex().This function requires that the target tag be an integer.

This function is active.

This function does not return a value.

SetIntTag(5,1234)

Chapter 2 Standard Functions Drawing No. LP1045

SetLanguage(code) Revision E

 244 Reference Guide

ARGUMENT TYPE DESCRIPTION

code int The language to be selected.

Set the operator interface’s current language to that indicated by code.

This function is active.

This function does not return a value.

SetLanguage(1)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E SetNow(time)

Reference Guide 245

ARGUMENT TYPE DESCRIPTION

time int The new time to be set.

Sets the current time via an integer that represents the number of seconds that have elapsed since 1st
January 1997. The integer is typically generated via the other time/date functions.

This function is active.

This function does not return a value.

SetNow(252288000)

Chapter 2 Standard Functions Drawing No. LP1045

SetRealTag(index, value) Revision E

 246 Reference Guide

ARGUMENT TYPE DESCRIPTION

index int The tag index number.

value float The value to be assigned.

This function sets the tag specified by index to the specified value. The index can be found from the

tag label using the function FindTagIndex().This function will only function if the select tag is floating
point.

This function is active.

This function does not return a value.

SetRealTag(5, 12.55)

Set the real tag of index 5 with value 12.55.

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E SetStringTag(index, data)

Reference Guide 247

ARGUMENT TYPE DESCRIPTION

index int Tag index number.

data cstring The value to be assigned.

This function sets the tag specified by index to the specified value. The index can be found from the

tag label using the function FindTagIndex().This function will only work if the target tag is a string.

This function is active.

This function does not return a value.

Chapter 2 Standard Functions Drawing No. LP1045

Sgn(value) Revision E

 248 Reference Guide

ARGUMENT TYPE DESCRIPTION

value int / float The value to be processed.

Returns –1 if value is less than zero, +1 if it is greater than zero, or 0 if it is equal to zero.

This function is passive.

int or float, depending on the type of the value argument.

State = Sgn(Level)+1

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E ShowMenu(name)

Reference Guide 249

ARGUMENT TYPE DESCRIPTION

name Display Page The display page to show as popup menu.

Displays the page specified as a popup menu. Popup menus are shown on top of whatever is already on
the screen, and are aligned with the left-hand side of the display.

This function is active.

This function does not return a value.

ShowMenu(Page2)

Chapter 2 Standard Functions Drawing No. LP1045

ShowModal(name) Revision E

 250 Reference Guide

ARGUMENT TYPE DESCRIPTION

name Display Page The page to be displayed as a modal popup.

Shows page name as a popup on the Crimson device’s display. The popup will be centered on the
display, and shown on top of the existing page and any existing popups. The popup will not be removed
and the function will not return until a call is made to EndModal(), at which point the value passed to that

function will be returned by ShowModal().
Modal popups are used to implement user interface features such as yes-or-no confirmation popups

from within a program. For example, you may wish to have the user confirm that a given file should
indeed be deleted by your proceed-with-the-delete operation. Modal popups make this easier, and
involve the need to create complex state machines.

This function is active.

int

if(ShowModal(ConfirmDelete) == 1) {

DeleteFile(OpenFile(“file.dat”, 1));

}

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E ShowNested(name)

Reference Guide 251

ARGUMENT TYPE DESCRIPTION

name Display Page The page to be displayed as a popup.

Shows page name as a popup on the Crimson device’s display. The popup will be centered on the
display, and shown on top of the existing page and any existing popups. The popup can be removed by
calling either the HidePopup() or HideAllPopups() functions. It will also be removed from the display if

a new page is selected by invoking the GotoPage() function, or by a suitably defined keyboard action.

This function is active.

This function does not return a value.

Chapter 2 Standard Functions Drawing No. LP1045

ShowPopup(name) Revision E

 252 Reference Guide

ARGUMENT TYPE DESCRIPTION

name Display Page The page to be displayed as a popup.

Shows page name as a popup on the Crimson device’s display. The popup will be centered on the
display, and shown on top of the existing page. The popup can be removed by calling the HidePopup()

function. It will also be removed from the display if a new page is selected by invoking the GotoPage()
function, or by a suitably defined keyboard action.

This function is active.

This function does not return a value.

ShowPopup(Popup1)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E sin(theta)

Reference Guide 253

ARGUMENT TYPE DESCRIPTION

theta float The angle, in radians, to be processed.

Returns the sine of the angle theta.

This function is passive.

float

yp = radius*sin(theta)

Chapter 2 Standard Functions Drawing No. LP1045

sinR64(result, tag) Revision E

 254 Reference Guide

ARGUMENT TYPE DESCRIPTION

result int The result.

tag int The angle, in radians, to be processed.

Calculates the sine of tag using 64-bit double precision floating point math and stores the result in
result. The input operand tag should be obtained from one of the 64-bit conversion functions provided or
from a driver that can read double precision values. All arguments to this function must be integer arrays
with lengths of 2. An in-depth example is provided in the entry for AddR64.

This function is active.

void

sinR64(result[0], tag[0])

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E SirenOn()

Reference Guide 255

ARGUMENT TYPE DESCRIPTION

none

Turns on the operator interface’s internal siren.

This function is active.

This function does not return a value.

SirenOn()

Chapter 2 Standard Functions Drawing No. LP1045

Sleep(period) Revision E

 256 Reference Guide

ARGUMENT TYPE DESCRIPTION

period int The period for which to sleep, in milliseconds.

Sleeps the current task for the indicated number of milliseconds. This function is normally used within
programs that run in the background, or that implement custom communications using Raw Port drivers.
Calling it in response to triggers or key presses is not recommended.

This function is active.

This function does not return a value.

Sleep(100)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E Sqrt(value)

Reference Guide 257

ARGUMENT TYPE DESCRIPTION

value int/float The value to be processed.

Returns the square root of value.

This function is passive.

int or float, depending on the type of the value argument.

Flow = Const * Sqrt(Input)

Chapter 2 Standard Functions Drawing No. LP1045

SqrtR64(result, tag) Revision E

 258 Reference Guide

ARGUMENT TYPE DESCRIPTION

result int The result.

tag int The value to be processed.

Calculates the square root of tag using 64-bit double precision floating point math and stores the result
in result. The input operand tag should be obtained from one of the 64-bit conversion functions provided
or from a driver that can read double precision values. All arguments to this function must be integer
arrays with lengths of 2. An in-depth example is provided in the entry for AddR64.

This function is active.

void

SqrtR64(result[0], tag[0])

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E StdDev(element, count)

Reference Guide 259

ARGUMENT TYPE DESCRIPTION

element int/float The first array element to be processed.

count int The number of elements to be processed.

Returns the standard deviation of the count array elements from element onwards, assuming the data
points to represent a sample of the population under study. If you need to find the standard deviation of
the whole population, use the PopDev function instead.

This function is passive.

float

Dev = StdDev(Data[0], 10)

Chapter 2 Standard Functions Drawing No. LP1045

StopSystem() Revision E

 260 Reference Guide

ARGUMENT TYPE DESCRIPTION

none

Stops the Crimson device to allow a user to update the database. This function is typically used when
serial programming is required with respect to a unit whose programming port has been allocated for
communications. Calling this function shuts down all communications, and thereby allows the port to
function as a programming port once more.

This function is active.

This function does not return a value.

StopSystem()

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E Strip(text, target)

Reference Guide 261

ARGUMENT TYPE DESCRIPTION

text cstring The string to be processed.

target int The character to be removed.

Removes all occurrences of a given character from a text string.

This function is passive.

cstring

Text = Strip(“Mississippi”, ’s’)

Chapter 2 Standard Functions Drawing No. LP1045

SubR64(result, tag1, tag2) Revision E

 262 Reference Guide

ARGUMENT TYPE DESCRIPTION

result int The result.

tag1 int The minuend value.

tag2 int The subtrahend value.

Calculates the value of tag1 minus tag2 using 64-bit double precision floating point math and stores the
result in result. The input operands tag1 and tag2 should be obtained from one of the 64-bit conversion
functions provided or from a driver that can read double precision values. All arguments to this function
must be integer arrays with lengths of 2. An in-depth example is provided in the entry for AddR64.

This function is active.

void

SubR64(result[0], tag1[0], tag2[0])

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E SubU32(tag1, tag2)

Reference Guide 263

ARGUMENT TYPE DESCRIPTION

tag1 int The minuend tag.

tag2 int The subtrahend tag.

Returns the value of tag1 minus tag2 in an unsigned context.

This function is passive.

int

Result = SubU32(tag1, tag2)

Chapter 2 Standard Functions Drawing No. LP1045

Sum(element, count) Revision E

 264 Reference Guide

ARGUMENT TYPE DESCRIPTION

element int/float The first array element to be processed.

count int The number of elements to be processed.

Returns the sum of the count array elements from element onwards.

This function is passive.

int or float, depending on the type of the value argument.

Total = Sum(Data[0], 10)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E tan(theta)

Reference Guide 265

ARGUMENT TYPE DESCRIPTION

theta float The angle, in radians, to be processed.

Returns the tangent of the angle theta.

This function is passive.

float

yp = xp * tan(theta)

Chapter 2 Standard Functions Drawing No. LP1045

tanR64(result, tag) Revision E

 266 Reference Guide

ARGUMENT TYPE DESCRIPTION

result int The result.

tag int The angle, in radians, to be processed.

Calculates the tangent of tag using 64-bit double precision floating point math and stores the result in
result. The input operand tag should be obtained from one of the 64-bit conversion functions provided or
from a driver that can read double precision values. All arguments to this function must be integer arrays
with lengths of 2. An in-depth example is provided in the entry for AddR64.

This function is active.

void

tanR64(result[0], tag[0])

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E TestAccess(rights, prompt)

Reference Guide 267

ARGUMENT TYPE DESCRIPTION

rights int The required access rights.

prompt cstring The prompt to be used in the log-on popup.

Returns a value of true or false depending on whether the current user has access rights defined by the
rights parameter. This parameter contains a bitmask representing the various userdefined rights, with
bit 0 (i.e., the bit with a value of 0x01) representing User Right 1, bit 1 (i.e., the bit with a value of 0x02)
representing User Right 2, and so on. If no user is currently logged on, the system will display a popup to
ask for user credentials, using the prompt argument to indicate why the popup is being displayed. The
function is typically used in programs that perform a number of actions that might be subject to security,
and that might otherwise be interrupted by a log-on popup. By executing this function before the actions
are performed, you can provide a better indication to the user as to why a log-on is required, and you can
avoid a security failure part way through a series of operations.

This function is passive.

int

if(TestAccess(1, “Clear all data?”)) {

Data1 = 0;

Data2 = 0;

Data3 = 0;

}

Chapter 2 Standard Functions Drawing No. LP1045

TextToAddr(addr) Revision E

 268 Reference Guide

ARGUMENT TYPE DESCRIPTION

addr cstring The addressed in dotted-decimal form.

Converts a dotted-decimal string into a 32-bit IP address.

This function is passive.

int

ip = TextToAddr(“192.168.0.1”)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E TextToFloat(string)

Reference Guide 269

ARGUMENT TYPE DESCRIPTION

string cstring The string to be processed.

Returns the value of string, treating it as a floating-point number. This function is often used together
with Mid to extract values from strings received from raw serial ports. It can also be used to convert other
string values into floating-point numbers.

This function is passive.

float

Data = TextToFloat("3.142")

Chapter 2 Standard Functions Drawing No. LP1045

TextToInt(string, radix) Revision E

 270 Reference Guide

ARGUMENT TYPE DESCRIPTION

string cstring The string to be processed.

radix int The number base to be used.

Returns the value of string, treating it as a number of base radix. This function is often used together

with Mid to extract values from strings received from raw serial ports. It can also be used to convert other
string values into integers.

This function is passive.

int

Data = TextToInt("1234", 10)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E TextToR64(input, output)

Reference Guide 271

ARGUMENT TYPE DESCRIPTION

input cstring The text to be converted.

output int The destination of the 64-bit result.

Interprets the value stored in the string input as a 64-bit double precision floating point number and
stores the result as an array of length 2 in output. The tag output should therefore be an integer array with
an extent of at least 2. After execution of this function, the value stored in result is suitable for use in
other 64-bit math functions. See the entry for AddR64 for an example of the intended use of this function.

This function is active.

void

TextToR64(input, output[0])

Chapter 2 Standard Functions Drawing No. LP1045

Time(h, m, s) Revision E

 272 Reference Guide

ARGUMENT TYPE DESCRIPTION

h int The hour to be encoded, from 0 to 23.

m int The minute to be encoded, from 0 to 59.

s int The second to be encoded, from 0 to 59.

Returns a value representing the indicated time as the number of seconds elapsed since midnight. This
value can then be used with other time/date functions. It can also be added to the value produced by
Date to produce a value that references a particular time and date.

This function is passive.

int

t = Date(2000,12,31) + Time(12,30,0)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E TxCAN(port, data, id)

Reference Guide 273

ARGUMENT TYPE DESCRIPTION

port int The raw CAN port.

data int The first array element holding data to transmit.

id int 29-bit CAN Identifier.

Sends CAN messages on a port that has been initialized with TxCANInit. The first four bytes of the
message to transmit should be stored using Big Endian byte ordering in the first element of the array,
with any further bytes following in the subsequent array entries in the same format. The function returns
a value of 1 upon success.

This function is active.

int

TxCAN(8, Data, 0x12345677)

Chapter 2 Standard Functions Drawing No. LP1045

TxCANInit(port, id, dlc) Revision E

 274 Reference Guide

ARGUMENT TYPE DESCRIPTION

port int The raw CAN port.

id int 29-bit CAN identifier.

dlc int Data Length Count of 1 – 8 bytes.

Initializes CAN messages to be sent via the CAN Option Card. This function returns a value of 1 upon
success or a value of 0 indicating failure. Calls should be made only after the system has started and each
29-bit identifier should only be initialized once.

This function is active.

int

TxCANInit(8, 0x12345677, 8)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E UseCameraSetup(port, camera, index)

Reference Guide 275

ARGUMENT TYPE DESCRIPTION

port int The port number where the camera is connected.

camera int The camera device number.

index int The inspection file number in the camera.

This function selects the inspection file to be used by the camera. The number to be placed in the port
argument is the port number to which the driver is bound. The argument camera is the device number
displayed in the Crimson status bar when the camera is selected. More than one camera can be
connected under a single driver. The index represents the inspection file number within the camera. This
function will return true if successful, false otherwise. This function should be called in a user program
that runs in the background. Calling in the foreground will cause the User Interface to pause.

This function is active.

int

Success = UseCameraSetup(4, 0, 1)

Chapter 2 Standard Functions Drawing No. LP1045

UserLogOff() Revision E

 276 Reference Guide

ARGUMENT TYPE DESCRIPTION

none

Causes the current user to be logged-off the system. Any future actions that require security access
rights will result in the display of the log-on popup to allow the entry of credentials.

This function is active.

This function does not return a value.

UserLogOff()

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E UserLogOn()

Reference Guide 277

ARGUMENT TYPE DESCRIPTION

none

Forces the display of the log-on popup to allow the entry of user credentials. You do not normally have
to use this function, as Crimson 3.1 will prompt for credentials when any action that requires security
clearance is performed.

This function is active.

This function does not return a value.

UserLogOn()

Chapter 2 Standard Functions Drawing No. LP1045

WaitData(data, count, time) Revision E

 278 Reference Guide

ARGUMENT TYPE DESCRIPTION

data any The first array element to be read.

count int The number of elements to be read.

time int The timeout period in milliseconds.

Requests that count elements from array element data onwards to read on the next comms scan. This
function is used with arrays that have been mapped to external data, and which have their read policy set
to Read Manually. Unlike ReadData(), this function waits for up to the time specified by the time
parameter in order to allow the data to be read. The return value is 1 if the read completed within that
period, or 0 otherwise.

This function is active.

int

status = WaitData(array1[8], 10, 1000)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E WriteAll()

Reference Guide 279

ARGUMENT TYPE DESCRIPTION

none

Forces all mapped tags that are not ready-only to be written to their remote devices.

This function is active.

This function does not return a value.

Chapter 2 Standard Functions Drawing No. LP1045

WriteFile(file, text) Revision E

 280 Reference Guide

ARGUMENT TYPE DESCRIPTION

file int The file handle as required by OpenFile.

Text cstring The text to be written to file.

Writes a string up to 512 characters in length to the specified file and returns the number of bytes
successfully written. This function does not automatically include a Line feed and carriage return at the
end. For easier programming, refer to WriteFileLine().

This function is active.

int

count = WriteFile(hFile, “Writing text to file.”)

Drawing No. LP1045 Chapter 2 Standard Functions

Revision E WriteFileLine(file, text)

Reference Guide 281

ARGUMENT TYPE DESCRIPTION

file int File handle as required by OpenFile.

text cstring Text to be written to file.

Writes a string to the specified file and returns the number of bytes successfully written, including the
carriage return and linefeed characters that will be appended to each line.

This function is active.

int

count = WriteFileLine(hFile, “Writing text to file.”)

Chapter 2 Standard Functions Drawing No. LP1045

WriteFileLine(file, text) Revision E

 282 Reference Guide

Drawing No. LP1045 Chapter 3 System Variables

Revision E WriteFileLine(file, text)

Reference Guide 283

This chapter describes the system variables available within Crimson 3.1. These system variables can be
invoked within actions or expressions, as described in the Crimson 3.1 Software Guide. System variables
are used either to reflect the state of the system, or to modify the behavior of the system in some way.
When used to reflect system state, a system variable is Read-Only. When used to modify system
behavior, a system variable can be assigned a Read / Write value.

Chapter 3 System Variables Drawing No. LP1045

ActiveAlarms Revision E

 284 Reference Guide

Returns a count of the currently active alarms.

int

Read-Only

Drawing No. LP1045 Chapter 3 System Variables

Revision E CommsError

Reference Guide 285

Returns a bitmask indicating whether each communications device is offline. A value of 1 in a given bit
position indicates that the corresponding device is experiencing comms errors. Bit 0 (i.e., the bit with a
value of 1) corresponds to the first communication device.

int

Read-Only

Chapter 3 System Variables Drawing No. LP1045

DispBrightness Revision E

 286 Reference Guide

Returns a number indicating the brightness of the display from 0 to 100, with zero being off.

int

Read / Write

Drawing No. LP1045 Chapter 3 System Variables

Revision E DispContrast

Reference Guide 287

Returns a number indicating the amount of display contrast from 0 to 100.

int

Read / Write

Chapter 3 System Variables Drawing No. LP1045

DispCount Revision E

 288 Reference Guide

Returns a number indicating the number of display updates since last reset.

int

Read-Only

Drawing No. LP1045 Chapter 3 System Variables

Revision E DispUpdates

Reference Guide 289

Returns a number indicating how many times the display is updating per second.

int

Read-Only

Chapter 3 System Variables Drawing No. LP1045

IconBrightness Revision E

 290 Reference Guide

Contains a value indicating the brightness of the icon LEDs from 0 to 100, with zero being off.

int

Read / Write

Drawing No. LP1045 Chapter 3 System Variables

Revision E IsPressed

Reference Guide 291

Return true if the current primitive is being pressed via the touchscreen or web server, and false
otherwise. The variable is only valid within the expression or actions that are within the primitive’s
configuration, or within foreground programs called from those places. Referring to it in other situation
will produce an undefined value.

int

Read Only

Chapter 3 System Variables Drawing No. LP1045

IsSirenOn Revision E

 292 Reference Guide

Returns true if the panel’s sounder is on or false otherwise.

int

Read-Only

Drawing No. LP1045 Chapter 3 System Variables

Revision E Pi

Reference Guide 293

Returns pi as a floating-point number.

float

Read-Only

Chapter 3 System Variables Drawing No. LP1045

TimeNow Revision E

 294 Reference Guide

Returns the current time and date as the number of seconds elapsed since the datum point of 1st

January 1997. This value can then be used with other time/date functions. Writing to this variable will set
the real-time clock to the appropriate time.

int

Read / Write

Drawing No. LP1045 Chapter 3 System Variables

Revision E TimeZone

Reference Guide 295

Returns the Time Zone in hours from –12 to +12. Using the Link Send Time command in Crimson will
set the unit time and time zone to the computer’s values. Changing the Time Zone afterwards will
increment or decrement the unit time. Note that TimeZone can only be viewed or changed if the Time
Manager is enabled.

int

Read / Write

Chapter 3 System Variables Drawing No. LP1045

TimeZoneMins Revision E

 296 Reference Guide

Returns the Time Zone in minutes from –720 to +720. Using the Link Send Time command in Crimson
will set the unit time and time zone to the computer’s values. Changing the Time Zone afterwards will
increment or decrement the unit time. Note that TimeZoneMins can only be viewed or changed if the
Time Manager is enabled.

int

Read / Write

Drawing No. LP1045 Chapter 3 System Variables

Revision E Unaccepted Alarms

Reference Guide 297

Returns the number of unaccepted alarms in the system.

int

Read

Chapter 3 System Variables Drawing No. LP1045

UnacceptedAndAutoAlarms Revision E

 298 Reference Guide

Returns the number of alarms that are unaccepted in addition the number of alarms that are currently
active and configured to be auto-accepted.

int

Read-Only

Drawing No. LP1045 Chapter 3 System Variables

Revision E UseDST

Reference Guide 299

Returns the unit daylight saving time state. This variable will add an hour to the unit time if set to true.
Note that UseDST can only be viewed or changed if the Time Manager is enabled.

flag

Read / Write

Chapter 3 System Variables Drawing No. LP1045

UseDST Revision E

 300 Reference Guide

	Crimson® 3.1 Reference Guide
	Table of Contents
	Preface
	Disclaimer
	Trademark Acknowledgments
	Document History and Related Publications
	Additional Product Information

	Chapter 1 Introduction
	Supported Devices
	System Requirements
	Checking for Updates
	Getting Assistance
	Technical Support
	Online Forums

	Chapter 2 Standard Functions
	Abs(value)
	AbsR64(result, tag)
	acos(value)
	acosR64(result, tag)
	AddR64(result, tag1, tag2)
	AddU32 (tag1, tag2)
	AlarmAccept(alarm)
	AlarmAcceptAll()
	AlarmAcceptEx(source, method, code)
	AlarmAcceptTag(tag, index, event)
	asin(value)
	asinR64(result, tag)
	AsText(n)
	AsTextR64(data)
	AsTextR64WithFormat(format, data)
	atan(value)
	atan2(a, b)
	atanR64(result, tag)
	atan2R64(result, a, b)
	Beep(freq, period)
	CanGotoNext()
	CanGotoPrevious()
	ClearEvents()
	CloseFile(file)
	ColBlend(data, min, max, col1, col2)
	ColFlash(freq, col1, col2)
	ColGetBlue(col)
	ColGetGreen(col)
	ColGetRed(col)
	ColGetRGB(r,g,b)
	ColPick2(pick, col1, col2)
	ColPick4(data1, data2, col1, col2, col3, col4)
	ColSelFlash(enable, freq, col1, col2, col3)
	CommitAndReset()
	CompactFlashEject()
	CompactFlashStatus()
	CompU32(tag1, tag2)
	ControlDevice(device, enable)
	Copy(dest, src, count)
	CopyFiles(source, target, flags)
	cos(theta)
	cosR64(result, tag)
	CreateDirectory(name)
	CreateFile(name)
	DataToText(data, limit)
	Date(y, m, d)
	DecR64(result, tag)
	DecToText(data, signed, before, after, leading, group)
	Deg2Rad(theta)
	DeleteDirectory(name)
	DeleteFile(file)
	DevCtrl(device, function, data)
	DisableDevice(device)
	DispOff()
	DispOn()
	DivR64(result, tag1, tag2)
	DivU32(tag1, tag2)
	DrvCtrl(port, function, data)
	EjectDrive(drive)
	EmptyWriteQueue (dev)
	EnableBatteryCheck(disable)
	EnableDevice(device)
	EndBatch()
	EndModal(code)
	EnumOptionCard(s)
	EqualR64(a, b)
	exp(value)
	exp10(value)
	exp10R64(result, tag)
	expR64(result, tag)
	FileSeek(file, pos)
	FileTell(file)
	Fill(element, data, count)
	Find(string, char, skip)
	FindFileFirst(dir)
	FindFileNext()
	FindTagIndex(label)
	Flash(freq)
	Force(dest, data)
	ForceCopy(dest, src, count)
	ForceSQLSync()
	FormatCompactFlash()
	FormatDrive(drive)
	FtpGetFile(server, loc, rem, delete)
	FtpPutFile(server, loc, rem, delete)
	GetAlarmTag(index)
	GetAutoCopyStatusCode()
	GetAutoCopyStatusText()
	GetBatch()
	GetCameraData(port, camera, param)
	GetCurrentUserName()
	GetCurrentUserRealName()
	GetCurrentUserRights()
	GetDate (time) and Family
	GetDeviceStatus(device)
	GetDiskFreeBytes(drive)
	GetDiskFreePercent(drive)
	GetDiskSizeBytes(drive)
	GetDriveStatus(drive)
	GetFileByte(file)
	GetFileData(file, data, length)
	GetFormattedTag(index)
	GetInterfaceStatus(port)
	GetIntTag(index)
	GetLanguage()
	GetLastEventText(all)
	GetLastEventTime(all)
	GetLastEventType(all)
	GetLastSQLSyncStatus()
	GetLastSQLSyncTime(Request)
	GetModelName(code)
	GetMonthDays(y, m)
	GetNetGate(port)
	GetNetId(port)
	GetNetIp(port)
	GetNetMask(port)
	GetNow()
	GetNowDate()
	GetNowTime()
	GetPortConfig(port, param)
	GetRealTag(index)
	GetQueryStatus(Query)
	GetQueryTime(Query)
	GetRestartCode(n)
	GetRestartInfo(n)
	GetRestartText(n)
	GetRestartTime(n)
	GetSQLConnectionStatus()
	GetStringTag(index)
	GetTagLabel(index)
	GetUpDownData(data, limit)
	GetUpDownStep(data, limit)
	GetVersionInfo(code)
	GetWebParamHex(param)
	GetWebParamInt(param)
	GetWebParamString(param)
	GotoNext()
	GotoPage(name)
	GotoPrevious()
	GreaterEqR64(a, b)
	GreaterR64(a, b)
	HasAccess (rights)
	HasAllAccess(rights)
	HideAllPopups()
	HidePopup()
	IncR64(result, tag)
	IntToR64(result, n)
	IntToText(data, radix, count)
	IsBatchNameValid(name)
	IsBatteryLow()
	IsDeviceOnline(device)
	IsLoggingActive()
	IsPortRemote(port)
	IsSQLSyncRunning()
	IsWriteQueueEmpty(dev)
	KillDirectory(name)
	Left(string, count)
	Len(string)
	LessEqR64(a, b)
	LessR64(a, b)
	LoadCameraSetup(port, camera, index, file)
	LoadSecurityDatabase(mode, file)
	Log(value)
	Log10(value)
	Log10R64(result, tag)
	LogBatchComment(set, text)
	LogBatchHeader(set, text)
	LogComment(log, text)
	LogHeader(log, text)
	logR64(result, tag)
	LogSave()
	MakeFloat(value)
	MakeInt(value)
	Max(a, b)
	MaxR64(result, tag1, tag2)
	MaxU32(tag1, tag2)
	Mean(element, count)
	Mid(string, pos, count)
	Min(a, b)
	MinR64(result, tag1, tag2)
	MinU32(tag1, tag2)
	MinusR64(result, tag)
	ModU32(tag1, tag2)
	MountCompactFlash(enable)
	MoveFiles(source, target, flags)
	MulDiv(a, b, c)
	MulR64(result, tag1, tag2)
	MulU32(tag1, tag2)
	MuteSiren()
	NetworkPing(address, timeout)
	NewBatch(name)
	Nop()
	NotEqualR64(a, b)
	OpenFile(name, mode)
	Pi()
	PlayRTTTL(tune)
	PopDev(element, count)
	PortClose(port)
	PortGetCTS(port)
	PortInput(port, start, end, timeout, length)
	PortPrint(port, string)
	PortPrintEx(port, string)
	PortRead(port, period)
	PortSendData(port, data, count)
	PortSetRTS(port, state)
	PortWrite(port, data)
	PostKey(code, transition)
	Power(value, power)
	PowR64(result, value, power)
	PrintScreenToFile(path, name, res)
	PutFileByte(file, data)
	PutFileData(file, data, length)
	R64ToInt(x)
	R64ToReal(x)
	Rad2Deg(theta)
	Random(range)
	ReadData(data, count)
	ReadFile(file, chars)
	ReadFileLine(file)
	RealToR64(result, n)
	RenameFile(handle, name)
	ResolveDNS(name)
	Right(string, count)
	RShU32(tag1, tag2)
	RunAllQueries()
	RunQuery(query)
	RxCAN(port, data, id)
	RxCANInit(port, id, dlc)
	SaveCameraSetup(port, camera, index, file)
	SaveConfigFile(file)
	SaveSecurityDatabase(mode, file)
	Scale(data, r1, r2, e1, e2)
	SendFile(rcpt, file)
	SendFileEx(rcpt, file, subject, flag)
	SendMail(rcpt, subject, body)
	Set(tag, value)
	SetIconLed(id, state)
	SetIntTag(index, value)
	SetLanguage(code)
	SetNow(time)
	SetRealTag(index, value)
	SetStringTag(index, data)
	Sgn(value)
	ShowMenu(name)
	ShowModal(name)
	ShowNested(name)
	ShowPopup(name)
	sin(theta)
	sinR64(result, tag)
	SirenOn()
	Sleep(period)
	Sqrt(value)
	SqrtR64(result, tag)
	StdDev(element, count)
	StopSystem()
	Strip(text, target)
	SubR64(result, tag1, tag2)
	SubU32(tag1, tag2)
	Sum(element, count)
	tan(theta)
	tanR64(result, tag)
	TestAccess(rights, prompt)
	TextToAddr(addr)
	TextToFloat(string)
	TextToInt(string, radix)
	TextToR64(input, output)
	Time(h, m, s)
	TxCAN(port, data, id)
	TxCANInit(port, id, dlc)
	UseCameraSetup(port, camera, index)
	UserLogOff()
	UserLogOn()
	WaitData(data, count, time)
	WriteAll()
	WriteFile(file, text)
	WriteFileLine(file, text)

	Chapter 3 System Variables
	ActiveAlarms
	CommsError
	DispBrightness
	DispContrast
	DispCount
	DispUpdates
	IconBrightness
	IsPressed
	IsSirenOn
	Pi
	TimeNow
	TimeZone
	TimeZoneMins
	Unaccepted Alarms
	UnacceptedAndAutoAlarms
	UseDST

