
Nonlinear Scaling

1

Industrial Automation
Tech Note 27 Nonlinear Scaling

Abstract:
This document describes using Crimson® 3.0 programming to scale a nonlinear
input signal.

Products:
G3 Series HMI / G3 Kadet HMI / Graphite® HMI / Graphite® Controllers / Modular
Controller / Data Station Plus / ProducTVity Station

Use Case: Scaling a Nonlinear Input Signal
Many applications involve a nonlinear relationship between the input signal and
the engineering units that it represents, such as the level of a conical or
horizontally mounted cylindrical tank. This document explains how to scale the
signal using Crimson programming, as well as replacing the functionality of the
obsolete CSINI8L0 and CSINV8L0 modules.

Required Software:
Crimson 3.0

2 Nonlinear Scaling

Nonlinear Scaling TNIA27 Rev A

Theory
When the equation that relates the input signal to the engineering units is unknown the alternative is to divide the
curve into multiple lines. The more lines that are used the closer the engineering units will be. In order to generate
these lines, a series of X (input signal) and Y (engineering unit) coordinates are entered into arrays. The input
signal is compared to the elements of the X array in order to find which line segment should be used to calculate
the engineering units.

Blue Line: y = x2 Green Line (4 points): 1,1; 10,100; 20,400; 30, 900

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Nonlinear Scaling TNIA27 Rev A

Nonlinear Scaling 3

Application
1. Create and populate X and Y arrays.

• The arrays can be exposed for entry from the user
interface or populated by a program.

• For a more accurate result, use more data points. The

chart below shows the inaccuracy of using only 4 points
compared to the true equation output:

Input Squared
4 Segment
Calculation

1 1 1

2 4 12

3 9 23

4 16 34

5 25 45

6 36 56

7 49 67

8 64 78

9 81 89

10 100 100

11 121 130

12 144 160

13 169 190

14 196 220

15 225 250

16 256 280

17 289 310

18 324 340

19 361 370

20 400 400

21 441 450

22 484 500

23 529 550

24 576 600

25 625 650

26 676 700

27 729 750

28 784 800

29 841 850

30 900 900

// populate arrays with known data points

X[0] = 1;
Y[0] = 1;

X[1] = 10;
Y[1] = 100;

X[2] = 20;
Y[2] = 400;

X[3] = 30;
Y[3] = 900;

4 Nonlinear Scaling

Nonlinear Scaling TNIA27 Rev A

2. Create the program (CalcVal).
a. Edit the program’s prototype.

1) Return Type – Data Type: Floating-Point or Integer
2) Parameters – Floating-Point or Integer (Input)

b. Write the program code.

3. Use the program as the Source of a tag.
a. Create a new Numeric Tag.
b. Change its Source to General.
c. Type in the name of the program, with the name of the source value as its argument: CalcVal(Reading).

For more information: http://www.redlion.net/support/policies-statements/warranty-statement

// declare locals
int i;
float PVSpan, InputSpan;

// loop until we get to the point in the arrays where the actual input value is
while((Input > X[i]) && (X[i] != 0)) i ++;

// if it is right on a point, return the display value with the offset
if(Input == X[i])
 return Y[i];

// if it is between points, calculate the display value
else {
 // calculate PV change in this segment
 PVSpan = Y[i] - Y[i-1];
 // calculate input change in this segment
 InputSpan = X[i] - X[i-1];
 // if there is an input change, calculate the PV (y=mx+b)
 if(InputSpan > 0)
 return (((Input - X[i-1]) * PVSpan) / InputSpan) + Y[i-1];
 else
 return Y[i-1];
}

// if the input falls outside of the scaled range, return a high number
if((i != 0)&&(X[i] == 0))
 return 99999.1;

http://www.redlion.net/support/policies-statements/warranty-statement

	Abstract:
	Products:
	Use Case: Scaling a Nonlinear Input Signal
	Required Software:
	Theory
	Application

