
1. SN SDK Setup And Installation . 2
2. SN-SDK User Guide . 9
3. SN SDK IODB Library Reference . 17
4. SDK How-To's . 24

4.1 XFGLib User Guide . 24
4.2 Controlling Cellular Connection . 29

4.2.1 Lighttpd testing . 32
4.3 SMS Messages . 33
4.4 Sending Emails . 42
4.5 System Statistics . 46
4.6 Getting GPS data from the Device . 50
4.7 AT Command Interface . 58

5. Include Libraries . 61
6. snupdate . 65
7. Package Preservation . 68
8. GAU Custom Extensions . 70

8.1 Add Custom Tabs to Navigation . 73
9. Web UI Integration . 75
10. xfglib - multi-subsystem xml configurator . 80

1.
2.
3.
4.

1.

SN SDK Setup And Installation
Introduction

Supported Build Host
VM Installation

VirtualBox Installation
Ubuntu Installation
Ubuntu Setup

Screen resolution adjustment
Setting up shared folders

SDK Installation
System Setup
Toolchain Installation
Bootstrap Installation

Installation

Introduction

This document was created to assist in setup and installation of custom applications for Red Lion hardware.

Downloads of sdk related files can be found support page at under section "http://www.redlion.net/industrial-wireless-software-firmware SDK
".Application (Sixnet RAM Series)

Supported Build Host

Only Linux Operating Systems are supported as a build host. Any major modern Linux distribution which supports rpm files, either natively or
through a translation program, should work. For example:

Ubuntu
Fedora
OpenSuse

VM Installation

You can skip this step and continue on with if you are running a Supported Build Host above or already have Virtual Machine withSDK Installation
Support Build Host. This step is for if you are running Microsoft Windows operating system.

VirtualBox Installation

Download the latest version of VirtualBox from .https://www.virtualbox.org/wiki/Downloads
Download the Oracle VM Virtual Machine Extension Pack. The Extension Pack is for USB connections.
After installer has been downloaded, run the installer and install VirturalBox.
Once VirtualBox has installed, install the extension pack.

For details and help on VirtualBox installation, please visit https://www.virtualbox.org/manual/ch01.html

Ubuntu Installation

Download Ubuntu 64bit from . http://www.ubuntu.com/download/desktop

We recommend to download the latest version. This may not be the latest version available, but will long term support
be most stable and reliable.

http://www.redlion.net/industrial-wireless-software-firmware
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/manual/ch01.html
http://www.ubuntu.com/download/desktop

1.

2.
3.

4.

5.

6.

Run VirtualBox that you have installed in earlier steps.
Click New

 Enter your machine name. For example "Ubuntu_SDK". Select from Select from . Click .Linux Type. Ubuntu (64-bit) Version Next

Select how much of memory you virtual machine will have. We recommend 2GB of memory. Click .Next

Select for Hard Disk. Click .Create a virtual hard disk now Create

6.

7.

8.
9.

10.

11.

For , no changes are needed, just click .Hard dist file type Next

For Storage on physical disk, leave selected as . Click .Dynamically allocated Next
Select where you would like your files to be save. By default they are saved in C:\Users\<UserName>\VirtualBox VMs, Select at least
8GB of HDD space. We recommend 16GB. Click .Create

Now you have Virtual Machine created. We are now ready to install Ubuntu onto Virtual Machine. From VirtualBox Manager, select newly
created Virtual Machine and click .Start

Select start up disk by clicking to browse for the Ubuntu ISO that you have downloaded in step 1. Click .Start

11.

12.

13.
14.

15.
16.
17.
18.

19.

Ubuntu will start booting. On Ubuntu screen, Click .Welcome Install Ubuntu

On screen, click . Preparing to install Ubuntu Continue
Select as installation type and click .Erase dist and install Ubuntu Install Now

On warning message, click . Write the changes to disk? Continue
Select your timezone and click . Continue
Select your keyboard layout and click . Continue
Enter your name. Select a username. Enter a password. Select login option and click Continue.

Installation is now in progress. This may take few minutes.

19.

20.

21.

1.

2.

Once installation is complete, click .Restart Now

After restart, on the screen below, press key.<Enter>

Ubuntu Setup

Screen resolution adjustment

On you first run, you may notice that your screen resolution is 640x480, even though you have changed the preferences to be much
bigger. You need to run the following command:

sudo apt-get install virtualbox-guest-utils virtualbox-guest-dkms

From VirtualBox window go to Devices>Insert Guest Additions CD image...

2.

3.
4.
5.

1.

2.

3.
4.

5.
6.
7.

Click Run to install VirtualBox Guest Additions
Restart Ubuntu
Now Ubuntu screen will adjust to VirtualBox screen size

Top

Setting up shared folders

Following steps are to setup a shared folder on Windows OS that you could access from Ubuntu. This is necessary to be able to transfer files to a
from Ubuntu.

In Ubuntu terminal run the following command:

sudo sed -i 's/\(vboxsf.*:\)$/\1<myuser>/' /etc/group

where <myuser> is your username
From VirtualBox window, go to > and select Machine Settings Shared Folders

Click on Add Folder icon.
Select a folder to be shared. Give that folder a name as it will appear in Ubuntu. Select . Click Auto-mount OK

Click to close setting window. OK
Restart Ubuntu
To verify that shared folder has been added, run the following commands:

cd /media
ls

You should now see a folder mount with name sf_<yourSharedFolderName>

7.

Top

SDK Installation

System Setup

As the base ELDK toolchain is compiled for 32-bit host systems, a compatibility layer is required on 64-bit host systems.

For Ubuntu, run the following to install ia32.libs

sudo apt-get install libc6:i386
sudo -i
cd /etc/apt/sources.list.d
echo "deb http://old-releases.ubuntu.com/ubuntu/ raring main restricted
universe multiverse" >ia32-libs-raring.list
apt-get update
apt-get install ia32-libs
rm /etc/apt/sources.list.d/ia32-libs-raring.list
apt-get update
exit
sudo apt-get install gcc-multilib

For Fedora, the following should be enough

sudo yum -y install glibc.i686 zlib.i686

Toolchain Installation

The latest binary distribution contains both toolchain compilers and compiled-for-device overlay libraries with headers. This can be unpacked
anywhere using tar:

tar -zxf snsdk.4.27.tgz -C <target directory>

See distribution package for more details.

Top

1.

Bootstrap Installation

The bootstrap build environment is provided as a convenience to users who wish to get up and running quickly. It contains a sandbox folder with
scripts for streamlining compiling and packaging a program, and a folder of reference examples/documentation.

For more information on how to configure/build/install an application using SN-SDK please go to SN-SDK User Guide

File name: snsdk_bootstrap_v4.tgz

Installation

Untar the tarball to some convenient <working directory> in which you would like to develop code.

tar -zxf snsdk_bootstrap_v4.tgz // Current Directory

// OR

tar -zxf snsdk_bootstrap_v4.tgz -C <working_directory> // to some
<working_directory>

Top

SN-SDK User Guide
Building the Program
Installing the Example Program

Product On-Board Web Interface Installation
Sixview Manager Installation
Command Line Interface

Additional Details
Libraries
configure.sh
sdk.conf
Controlling Package Installations

Install.sh functions
Install.sh functions usage example
install.sh example file

Example Application Persistence
Factory Reset

GAU Interaction with SDK Application
Sample custom SDK page

Step to enable SDK Sample Page
Example Program

This user guide uses an Example program. This code to this program could be found and also it is included in the . here bootstrap

Building the Program

The is available as native C source code in the bootstrap environment, along with the necessary Makefile(s) and directory example program
structure required to build a package for installation on your RAM series product.

To build the example program (iodbEx), simply navigate to the sandbox directory in the root of your bootstrap environment installation, and:

Place all of your source code in the sandbox/source folder. By default, all .c files will be included in the compile.
Run the following command to copy Example program to source forlder.

SDK Application Naming
Please Note: With current firmware, you can use Expert Mode in the Web UI to stop/start your application and have access to
a configuration file. To do this, your application must be named "sdk."

https://redlion.atlassian.net/wiki/spaces/PP/pages/87032089/SN-SDK+User+Guide
https://redlion.atlassian.net/wiki/spaces/PP/pages/87032064/SN+SDK+Setup+And+Installation#SNSDKSetupAndInstallation-bootstrap

1.

2.

3.

1.
2.
3.

4.
5.
6.

 cp ../reference/iodbEx.c source

Configure the build environment for your program and create accessory files by executing the following from the sandbox directory in
terminal.

./configure.sh

This script will create a Makefile in the sandbox directory, as well as sdk.init , sdk.conf, and install.sh in the accessory folder.
Compile your program:

make
make install

This will create a in the packages folder. Now you can use this zip file to install your (Example) program unto Ram device. sdk.zip

Now that you have successfully compiled the example program (make) and built a package for installation on your RAM series product (make
install), you need to install the package.

RAM series package files are simple .zip archives, containing full directory structures that will correspond to the installation location on your
RAM series product. Further, there is a special (optional) file that can control more advanced behavior during package installation.

Installing the Example Program

There are three ways to install the example program package:

Product On-Board Web Interface Installation

In product on-board web interface, to got >Admin Package Installation
Select package method - Upload the zip file or get it from the SD-Card (if equipped).
Select your zip package

Click "Install" at the bottom of the page
Click "OK" to confirm
Verify in the History block that the package has installed successfuly

6.

Sixview Manager Installation

The same .zip file you created for package installation through the GUI can be uploaded to a Sixview Manager server for remote distribution to a
unit. Simply create a job and add the package file to it. See for more details on uploading Patch files andSixview Manager documentation
creating jobs.

Command Line Interface

Upload to /tmp via TFTP, FTP, SCP or ZModem and install via:

[root@SNgateway-v3_09 tmp]# snupdate sdk.zip
snupdate v1.15
** Package contents appear valid.
** Running included installation script.
Archive: /tmp/sdk.zip
inflating: /usr/local/bin/sdk
Install success

Additional Details

Libraries

configure.sh

Command Line Interface is not recommended for customer user.

There is a limited space available for your application, and it is advised to use included libraries when possible. Please check
 for libraries that are included on the device before you install your own copies of same libraries. this list

https://redlion.atlassian.net/wiki/spaces/PP/pages/90538370/Include+Libraries

The configure script copies default files for your program and modifies install.sh if you specify whether your
program should start when the device boots and/or persist through reflashing. To bypass this script, copy the
default files needed for package installation like so:

cp defaults/Makefile .
cp defaults/sdk.init accessory/
cp defaults/sdk.conf accessory/
cp defaults/install.sh accessory/

sdk.conf

sdk.conf is a configuration file that you can edit through the GAU Sub-systems menu in Expert Mode. The configure script creates a default in the
accessory folder. You can rewrite this file to be used by your program. On the device, this file will be located here:

/etc/jbm/sdk.conf

sdk.conf is format independent and it is up to the SDK user to implement a compatible reader for any selected content.

Controlling Package Installations

Let’s start by examining the contents of the example package archive (sdk.zip):

See iodbTemplate.c in the reference directory for example usage of the daemon() function to add an application debug mode.
Daemonizing will redirect all standard output and errors to /dev/ null as is the default behavior based on the sdk.init script. In the
example, this is overridden by the -d command-line option.

Length Date Time Name
--------- ---------- ----- ----
 0 2012-04-04 18:23 etc/
 0 2012-04-04 18:23 etc/jbm/
 27 2012-04-04 18:23 etc/jbm/sdk.conf
 27 2012-04-04 18:23 etc/jbm/sdk.conf.orig
 0 2012-04-04 18:23 etc/rc.d/
 0 2012-04-04 18:23 etc/rc.d/init.d/
 964 2012-04-04 18:23 etc/rc.d/init.d/sdk
 1159 2012-04-04 18:23 install.sh
 0 2012-04-04 18:23 usr/
 0 2012-04-04 18:23 usr/local/
 0 2012-04-04 18:23 usr/local/bin/
 11096 2012-04-04 18:23 usr/local/bin/sdk
--------- -------
 13273 12 files

Notice the file in the package manifest named install.sh. This bash script will be executed, if present, before any package installation is executed.
The sample install.sh file included in the bootstrap environment is a straightforward example verify firmware version and to extract the contents of
the archive to the RAM series product and logs a message to syslog.

Without this special file, the example program would simply be extracted from the archive by the package installer, with no additional logic.

Install.sh functions

Install.sh has number of functions that assist in verifying firmware versions and cpu types. These functions are included in the sample install.sh.

printver() - Prints the current firmware version of the device

checkcpu() - checks if the cpu of the device
: string cpu type. Valid cpu names are: g25, bt6kArguments

: 0 on match, 1 if no matchReturns

checkcpu_bt6k() - checks if CPU is a bt6k CPU9, exits on failure

checkcpu_g25() - checks if CPU is a G25, exits on failure

Archive: iodbEx.zip

Warning: DO NOT modify these functions.

printver()

checkcpu()

checkcpu_bt6k()

checkcpus() - Checks a list of CPU types against checkcpu()
: a list of cpu types space seperated. Ex: "g25 btk6"Arguments

 0 on match, 1 if no matchReturns:

checksn() - Checks if the device is in the SN product line: bt6k, g25
 0 on match, 1 if no matchReturns:

vercomp() - compare between two versions
: arg1 - first version, arg2 - second version to compare toArguments

: 0 if both match, 1 if arg1 is greater than arg2, 2 if arg1 is less than arg2 Returns

checkversion() - Checks and compare version of the device
: - max version - less than or equal to, - min version (optional) - greater than or equal toArguments Arg1 Arg2

: 0 - match is ok, 1 - match is out of range (error)Returns

Install.sh functions usage example

The following line enables the init script for the program meaning it will start whenever the device boots.

chkconfig sdk on

This line copies the package file into a special directory causing it to be reinstalled next time the device is flashed.

cp -f $FILE_NAME /storage/sdk/install/

Test if the current build version is 4.24 and below for an install

checkcpu_g25()

checkcpus()

checksn()

vercomp()

checkversion()

WARNING: Configuring an untested package to install every time, or on bootup, could render your device inoperable. The SDK
is a powerful tool. Please test extensively before applying permanent changes.

checkversion "4.24"
if [$? = 1]; then
 printver
 echo "Package is for build 4.24 and lower, exiting"
 #exit 1
else
 echo "Version check OK for 4.24"
fi

Test if the current build version between 4.24 and 4.20, higher version must be first

checkversion "4.23" "4.20"
if [$? = 1]; then
 printver
 echo "Package is for build 4.20-4.23, exiting"
 #exit 1
else
 echo "Version check OK for 4.20-4.23"
fi

Manual test for a G25

checkcpu "g25"
if [$? = 1]; then
 echo "Error: Not a G25 CPU"
 #exit 1
fi

Also, see additional documentation for more information on creating package .zip files. snupdate

install.sh example file

Example Application Persistence

install.sh must be saved in UNIX, not DOS format.
If using Notepad++ to edit install.sh file, make following selection: Edit EOL Conversion UNIX/OSX
Format

install.sh

In order to allow your application(s) to persist across firmware upgrades, they must be stored in a special filesystem and format on the RAM
series product. The simplest way to do this is to move your tested installation package to the /storage/sdk/install directory on your RAM series
product. This can be accomplished with:

cp -f /tmp/iodbEx.zip /storage/sdk/install/

This has been added to the install.sh script, and is disabled by default.

More on application persistence, please see Package Preservation

Factory Reset

If your package is installed to persist across firmware upgrades, a factory reset will cause your package to be re-installed. If your application
creates any files at run-time post-install, these files will not be touched by the factory reset process.

To have run-time files removed by a factory reset, put them here:

 /vault/appdata

This folder is removed and recreated during a factory reset

GAU Interaction with SDK Application

The SDK subsystem can be managed through the GAU in expert mode. This is available by going to Advanced > Expert Mode > Configure
Sub-systems. Selecting "SDK" from the drop-down menu will display an editable configuration file and buttons for starting and stopping the
application.

If the sdk application uses the configuration file, it can be modified here. A copy of the original file is created by the bootstrap when packaging the
program, and can be restored by clicking the "Default" button.

Alternatively you may create your own web page and add it as extension tab/page to device GUI interface.

Details on setting up your own interface to be served by our web server, see Web UI Integration
For version 4.23 see Add Custom Tabs to Navigation
For version 4.24 and later see GAU Custom Extensions

Sample custom SDK page

An sample SDK page is included in the bootstrap in /reference/home. This "home" directory contains the entire directory structure and files
needed to install SDK sample page. On this page you have two controls, start and stop your application.

This feature is only available on select models. Check for directory presence before writing any files

This section applies if you named you application "sdk" only.

https://redlion.atlassian.net/wiki/spaces/PP/pages/92667929/Package+Preservation
https://redlion.atlassian.net/wiki/spaces/PP/pages/92668118/Web+UI+Integration
https://redlion.atlassian.net/wiki/spaces/PP/pages/57540709/Add+Custom+Tabs+to+Navigation
https://redlion.atlassian.net/wiki/spaces/PP/pages/91422813/GAU+Custom+Extensions

1.

2.

3.

Step to enable SDK Sample Page

run copy command to copy home directory to accessory directory

assuming you are in sandbox
cp -rf ../reference/home/ accessory/

Uncomment the following lines in the install.sh

Uncomment the following lines to add SDK tab to navigation bar
if ! grep --quiet "^SDK" /home/httpd/jbmconfig/txt/customTabs.txt;
then
 echo 'SDK,sdk.html' >> /home/httpd/jbmconfig/txt/customTabs.txt
else
 sed -i 's/^SDK.*$/SDK,sdk.html/'
/home/httpd/jbmcofig/txt/customTabs.txt
fi

To include home directory structure, run

make installTab

Example Program

This code is written to give an example or two on how to access the SN I/O database from external OEM applications.

Top

Discretes are bitpacked. 8 bits per byte. Floats are treated as floats (4 bytes), not doubles. Longs are treated as longs (4 bytes).

iodbEx.c

SN SDK IODB Library Reference
IODB Functions

IODBRead
IODBWrite
IODBWriteMask
IODBVersion

File List
iodb.h File Reference

IODB Functions

These library functions are used within applications to exchange I/O with a RAM Device station’s I/O registers.
Upcoming is a list of the function prototypes. Each function topic includes a C example.
Refer to the supplied sample program, , which uses these library function calls.iodbEx.c

These functions are used to read and write station I/O registers.

IODBRead

Use this function to:
Read one or more consecutive values from the I/O database based on type number and address.

Arguments:

Argument In/Out Definition

TypeNum in Register type

Addr in Starting address

NumRegs in Number of registers to read

pbuff out Buffer to read data into

StaName Not used. Pass NULL.

Return Values:

Value Definition

ENOERROR on success

EOUTOFRANGE if Addr+NumRegs exceeds values vailable for TypeNum

ENOSTATION if Addr or TypeNum is invalid for station

EINVALIDTYPE if TypeNum is invalid

EDBERROR if database cannot be opened.

Prototype:

https://redlion.atlassian.net/wiki/display/PP/SN-SDK+User+Guide#SN-SDKUserGuide-iodbEx

IODBerr IODBRead (
USHORT TypeNum,
USHORT Addr,
USHORT NumRegs,
void *pbuff,
const char *StaName
);

Examples:
.iodbEx.c

Top

IODBWrite

Use this function to:
Write one or more consecutive I/O values into the I/O database based on type number and address.

Arguments:

Argument In/Out Defnition

TypeNum in Register type

Addr in Starting address

NumRegs in Number of registers to write

pbuff in Buffer containing data to write

StaName in Not used. Pass NULL.

Return Values:

Value Definition

ENOERROR on success

EOUTOFRANGE if Addr+NumRegs exceeds values available for TypeNum

ENOSTATION if Addr or TypeNum is invalid for station

EINVALIDTYPE if TypeNum is invalid

EDBERROR if cannot open database for write.

Prototype:

https://redlion.atlassian.net/wiki/display/PP/SN-SDK+User+Guide#SN-SDKUserGuide-iodbEx

IODBerr IODBWrite (
USHORT TypeNum,
USHORT Addr,
USHORT NumRegs,
void *pbuff,
const char *StaName
);

Examples:
.iodbEx.c

Top

IODBWriteMask

Use this function to:
Write selected I/O values into I/O database.
The bit mask is used to indicate whether an I/O register is to be written to or not. A 0 indicates no, a 1 indicates yes.

Arguments:

Argument In/Out Definition

TypeNum in Register type

Addr in Starting address

NumRegs in Number of registers to write

pbuff in Buffer containing data to write

pMask in Controls which values to write

StaName in Not used. Pass NULL.

pMask specifies the write mask (a 1 indicates the point will be updated, and a 0 indicates the point will remain unchanged). The bit order of the
mask is as follows: the least-significant bit of the first byte of pMask corresponds to the register at address Addr. The bit positions continue in
ascending order to the most-significant bit and then continues on to the least-significant-bit of the next byte.

Return Values:

Value Definition

ENOERROR on success

EOUTOFRANGE if Addr+NumRegs exceeds values vailable for TypeNum

ENOSTATION if Addr or TypeNum is invalid for station

EINVALIDTYPE if TypeNum is invalid

EDBERROR if cannot open database for write

Prototype:

https://redlion.atlassian.net/wiki/display/PP/SN-SDK+User+Guide#SN-SDKUserGuide-iodbEx

IODBerr IODBWriteMask (
uint16_t TypeNum,
uint16_t Addr,
uint16_t NumRegs,
void *pbuff,
uint8_t *pMask,
const char *StaName
);

Top

IODBVersion

Use this function to:
Retrieve the current version of the DLL running for this library.

Return Values:

Library version. The most significant byte is the major version. The least signficant byte is the minor version.

Prototype:

USHORT IODBVersion (void);

Top

File List

Here is a list of all documented files with brief descriptions:

iodb.h File Reference

Declaration of SIXNET IODB functions.

#include "utypes.h"
#include <time.h>

Defines

#define IODB_VERSION 0x0100
#define EDBERROR -1
#define ENOERROR 0

#define EOUTOFRANGE 1
#define EINVALIDTYPE 2
#define ENOSTATION 3
#define EFILEACCESS 4
#define EFILENOTFOUND 5
#define EIODBNOTFOUND 6
#define EOUTOFMEMORY 7
#define ETASKERROR 8
#define ENONSIXNETFILE 9
#define ETAGNOTFOUND 10
#define EDUPLICATETAG 11
#define EBUFFERSIZE 12
#define ENOTANALOGTYPE 13
#define EREGISTERNOTFOUND 14
#define EEXCEEDEDMAXTAGS 15
#define NOFORMAT 1
#define SFORMAT 2
#define UFORMAT 3
#define LFORMAT 4
#define ULFORMAT 5
#define RESERVEDtype 0
#define ANALOGtype 1
#define DISCRETEtype 2
#define BYTEtype 3
#define LONGtype 4
#define FLOATtype 5
#define DOUBLEtype 6
#define USERtype 7
#define READSCAN 0
#define WRITESCAN 1
#define WRITEREAD 2
#define EXCEPTION 3
#define ASSIGNED 4
#define SIXTRAK 0
#define IOMUX 1
#define VERSAMUX 2
#define S60IBMN 3
#define LOCALCOMP 4
#define IODB 5
#define MISCTYPE 6
#define VERSATRAK 7
#define REMOTETRAK 8
#define ETHERTRAK 9
#define SYSPLAN_PROG 0
#define SPF_PROG 1
#define SCR_PROG 2
#define SCRADV_PROG 3
#define SCR_1131 4
#define SCR_1131_ADV 5
#define NO_LICENSE -1

#define TEMPORARY_LICENSE 0
#define DEMO_LICENSE 1
#define SINGLE_LICENSE 2
#define SITE_LICENSE 3
#define OEM_LICENSE 4

#define BYTE unsigned char
#define USHORT unsigned short
#define IODBerr unsigned short

Functions

IODBerr IODBRead (USHORT, USHORT, USHORT, void , const char)
// Read one or more consecutive values from the I/O database based on
type number and address.

IODBerr IODBWrite (USHORT, USHORT, USHORT, void , const char)
// Write one or more consecutive I/O values into the I/O database based
on type number and address.

IODBerr IODBWriteMask (USHORT, USHORT, USHORT, void , BYTE , const char
)

USHORT IODBVersion (void)
// Retrieve the current version of the DLL running for this library.

Top

SDK How-To's
This page is devoted to quick guide on how do I do a particular thing on the Red Lion Device using SN-SDK.

How do I make changes to the system config?

Where should I save my SDK program and config files?

A: Files that need to be persistent such as the ".conf" files should be stored in Vault. More detail on the Vault partition .here

How do I control the cellular connection?

How do I send/receive SMS messages?

How can I send email?

How do I re-flash from the command line?

A: Copy the .jffs2 files into the /tmp directory. Then run the command "cliflash" with no arguments. It will ask you if you want to save the
configuration, and afterwards proceed with re-flashing the device.

How do I read physical and virtual IO?

A: Information and details about how to read and write IODB values can be found on page in the seSN-SDK User Guide Example Program
ction.

How do I get system statistic/information?

How do I get GPS information?

How to execute AT Commands?

XFGLib User Guide

Step 1 - copy config.xml
Step 2 - Make GUI changes

https://redlion.atlassian.net/wiki/spaces/PP/pages/92668092/XFGLib+User+Guide
https://redlion.atlassian.net/wiki/spaces/PP/pages/92667929/Package+Preservation
https://redlion.atlassian.net/wiki/spaces/PP/pages/97910921/Controlling+Cellular+Connection
https://redlion.atlassian.net/wiki/spaces/PP/pages/96600141/SMS+Messages
https://redlion.atlassian.net/wiki/spaces/PP/pages/97484905/Sending+Emails
https://redlion.atlassian.net/wiki/spaces/PP/pages/87032089/SN-SDK+User+Guide
https://redlion.atlassian.net/wiki/spaces/PP/pages/87032089/SN-SDK+User+Guide#SN-SDKUserGuide-iodbEx
https://redlion.atlassian.net/wiki/spaces/PP/pages/96600115/System+Statistics
https://redlion.atlassian.net/wiki/spaces/PP/pages/97910805/Getting+GPS+data+from+the+Device
https://redlion.atlassian.net/wiki/spaces/PP/pages/97484914/AT+Command+Interface

Step 3 - note changes made
Step 4 - Prepare perl script

Difference between "Save" and "Apply"
Step 5. Verify your perl script
Step 6. Prepare install.sh

This user guide will guide you through how to use xfglib and how to implement it into your install.sh of your sdk application. Subsystem sshserver
will be used as an example subsystem.

Step 1 - copy config.xml

Copy existing(before making changes) config.xml to tmp or some other directory for reference.

cp /home/httpd/jbmconfig/conf/config.xml /tmp/

If you know the name of your subsystem, you can look up it current setting with grep

[root@SNgateway-v4_24_BETA-28 tmp]# grep -A 10 "sshserver subsystem"
/tmp/config.xml
 <sshserver subsystem="sshserver">
 <enable>n</enable>
 <advanced>n</advanced>
 <listenaddr>0.0.0.0</listenaddr>
 <listenport>22</listenport>
 <protocol>2</protocol>
 <gracetime>90</gracetime>
 <maxstartups>10</maxstartups>
 <rootlogin>n</rootlogin>
 </sshserver>

Now we can see current ssh settings as they appear in config.xml.

Step 2 - Make GUI changes

Now make changes to GUI settings.

In our example go to Services>SSH/TELNET Server

Set YesEnable SSH Server:
Set Show Advanced Configuration: Yes
Set Allow Root Login: Yes
Click Save

Step 3 - note changes made

Now that you have made changes in GUI, compare original config.xml with latest config.xml. You can view either view same section of the of the
config.xml and compare it with results from step 1, or you can run diff on original and latest config.xml files.

Viewing latest config.xml

[root@SNgateway-v4_24_BETA-28 tmp]# grep -A 10 "sshserver subsystem"
/home/httpd/jbmconfig/conf/config.xml
 <sshserver subsystem="sshserver">
 <enable changed="1">y</enable>
 <advanced changed="1">y</advanced>
 <listenaddr>0.0.0.0</listenaddr>
 <listenport>22</listenport>
 <protocol>2</protocol>
 <gracetime>90</gracetime>
 <maxstartups>10</maxstartups>
 <rootlogin changed="1">y</rootlogin>
 </sshserver>

runing diff

[root@SNgateway-v4_24_BETA-28 tmp]# diff /tmp/config.xml
/home/httpd/jbmconfig/conf/config.xml
--- /tmp/config.xml Tue Feb 23 03:31:45 2016
+++ /home/httpd/jbmconfig/conf/config.xml Tue Feb 23 03:44:49 2016
@@ -573,14 +573,14 @@
 <hostport>20000</hostport>
 </snproxy>
 <sshserver subsystem="sshserver">
- <enable>n</enable>
- <advanced>n</advanced>
+ <enable changed="1">y</enable>
+ <advanced changed="1">y</advanced>
 <listenaddr>0.0.0.0</listenaddr>
 <listenport>22</listenport>
 <protocol>2</protocol>
 <gracetime>90</gracetime>
 <maxstartups>10</maxstartups>
- <rootlogin>n</rootlogin>
+ <rootlogin changed="1">y</rootlogin>
 </sshserver>

Comparing the changes, you can see that tags , and have changes. The original values were "n", and latest areenable advanced rootlogin
"y" These are the tags that can be used in the perl script for xfglib.

Step 4 - Prepare perl script

Details on xfglib and function structure is found in XFGLib reference documentation.

Lets say now we would like to make the following changes to ssh:

Please note, the changes below are for demonstration purpose only.

https://redlion.atlassian.net/wiki/spaces/PP/pages/90538244/xfglib+-+multi-subsystem+xml+configurator

Listening IP Address: 10.0.0.1
Login Grace Time (seconds): 120
Maximum Concurrent Connections: 20
Allow Root Login: No

For the four fields above, looking at step 1 and 3, our tags will be as follows

Listening IP Address: listenaddr
Login Grace Time (seconds): gracetime
Maximum Concurrent Connections: maxstartups
Allow Root Login: rootlogin

Now we construct our perl scrip and populate tags.

require "/etc/jbm/xfglib.pl";

my %xml_settings = (
 listenaddr => "10.0.0.1",
 gracetime => "120",
 maxstartups => "20",
 rootlogin => "n"
);
&xfg_set_multi_attribute("sshserver", \%xml_settings);

&xfg_commit("apply");

Save your perl script to /tmp/ folder in you sdk package something like "mySSHsettings.pl".

Difference between "Save" and "Apply"

At the end of our perl script we run the following command

&xfg_commit("apply");

which will either save or apply our changes config.xml.

"apply" - will save our changes to config.xml and changes will take effect immediately.
"save" - will only save changes to config.xml. Changes will take effect after next reboot.

Step 5. Verify your perl script

Once you have make all change to your perl script, copy mySSHsettings.pl to your device and run the following command:

perl /tmp/mySSHsettings.pl

After script finished executing. go to Services>SSH/TELNET Server in you GUI browser and verity that changes are make correctly.

You can also verify by looking at the config.xml

[root@SNgateway-v4_24_BETA-28 tmp]# grep -A 10 "sshserver subsystem"
/home/httpd/jbmconfig/conf/config.xml
 <sshserver subsystem="sshserver">
 <enable>y</enable>
 <advanced>y</advanced>
 <listenaddr>10.0.0.1</listenaddr>
 <listenport>22</listenport>
 <protocol>2</protocol>
 <gracetime>120</gracetime>
 <maxstartups>20</maxstartups>
 <rootlogin>n</rootlogin>
 </sshserver>

Step 6. Prepare install.sh

To make your setting take change when you install your sdk application, add the following lines to install.sh.

make my custom changes to SSH settings
cmd /usr/bin/perl /tmp/mySSHsettings.pl

clean up
cmd /bin/rm -f /tmp/mySSHsettings.pl

As mentioned in step 4, save your perl script into some directory in your sdk package you will know about and that will be extracted during
installation. Recommended to save your perl script in /tmp/ directory.

Also it is recommended to clean up your perl script once it has been executed so that it would not be accidentally run again messing up your
setting down the road. Clean up script is show in above example

Controlling Cellular Connection

cellmodemconnect.pl
Example Output

Status of Cell Modem Up
Status of Cell Modem Off/Down

Cellular statistics

 Next
 Command

 \
 Current \
 State \

start stop con nocon clear tempoff permoff on status

(sample out)

Factory Default (
on)

reset modem stop NOP stop connection NOP power off
modem

power off and
write config

NOP Cell modem is powered ON
Interface <int name> is up
Activation status : Reg Home
Data connection : Connected

start NOP, warning
issue stop first

stop start connection stop connection Revert to
config
setting

power off
modem

power off and
write config

NOP

stop reset modem,
modem will go
back to config
state

NOP NOP / warn to
run 'start' first

NOP / warn to
run 'start' first

NOP / warn
to run 'start'
first

power off
modem

power off and
write config

NOP Cell modem is powered ON
No Cell modem interfaces
are up
Data connection : Not
Pending

con reset modem,
modem will
attempt data
connection

stop NOP Clear con, goto
nocon state

revert to
config
setting

power off
modem

power off and
write config

NOP Cell modem is powered ON
Interface <int name> is up
Activation status : Reg Home
Data connection : Connected
Temp Data directive : Forced
connection On

nocon reset modem,
modem will
not attempt
data
connection

stop Clear nocon,
goto con state

NOP revert to
config
setting

power off
modem

power off and
write config

NOP Cell modem is powered ON
Interface <int name> is up
Activation status : Reg Home
Data connection :
Disconnected
Temp Data directive : Forced
connection Off

clear reset modem stop goto con state goto nocon
state

NOP power off
modem

power off and
write config

NOP

tempoff power modem
off if not
already off

NOP NOP, warn NOP, warn NOP, warn NOP write config Clear tempoff,
power on
modem

Cell modem is configured
temporary OFF
Cell modem is powered OFF

permoff NOP NOP NOP, warn NOP, warn NOP, warn NOP NOP Clear tempoff,
power on
modem, set
config Enable
cellular to 'YES'

Cell modem is powered OFF

cellmodemconnect.pl

To control cellular connection, a script can be used. Following are the option takes.cellmodemconnect.pl cellmodemconnect.pl

Options Information SMS/RSSI Status After a reboot System
Config

Usage cellmodemconnect.pl <start | con | nocon | clear | stop | tempoff | permoff |
on | reset | status>

start Issues a modem reset. 'stop' must be called first. Paused during reset Returns to config
setting

Unaffected

stop Stop cell connection and polling programs (backends) Stopped. No signal updates,
no SMS

Returns to config
setting

Unaffected

tempoff Power off Cellmodem until 'on' or rebooted Stopped. No signal updates,
no SMS

Returns to config
setting

Unaffected

permoff Power off Cellmodem, turn off in config Stopped. No signal updates,
no SMS

Stays off Forced to
disable

on Power on Cellmodem, Enable interface in config Enabled Enabled Forced to
enable

con Signal backend proccesses to attempt a data connection, temporarily
overriding config.

Unaffected Returns to config
setting

Unaffected

nocon Signal backend proccesses to stop a data connection, temporarily overriding
config.

Unaffected Returns to config
setting

Unaffected

clear Clear both con/nocon triggers. Device should go back to config setting Unaffected Returns to config
setting

Unaffected

status Report current connection status Unaffected Unaffected Unaffected

reset Hard modem reset Paused during reset Unaffected Unaffected

Executing without any options, will default to with following output.cellmodemconnect.pl Usage

'stop' note
After issuing 'stop' all modem control and data connections stop. Modem will reset after 15 minutes via cron job if left in this state
unless tempoff or permoff has been issued

Modem resets are only allowed once every 5 minutes. If a modem command set of 'start, stop, start' are issued in less than 5 minutes,
the modem may not start back up immediately, but within a delayed 15 minutes.

[root@SNgateway-v4_23_RC-99-22 ~]# cellmodemconnect.pl

 cellmodemconnect.pl v1.6

 Usage: cellmodemconnect.pl <start | con | nocon | clear | stop |
tempoff | permoff | on | reset | status>

 start - Issues a modem reset.'stop' must be called first.

 stop - Stop cell connection and polling programs (backends)

 tempoff - Power off Cellmodem until 'on' or rebooted

 permoff - Power off Cellmodem, turn off in config

 on - Power on Cellmodem, Enable interface in config

 con - Signal backend proccesses to attempt a data connection,
temporarily
 overriding config.

 nocon - Signal backend proccesses to stop a data connection,
temporarily
 overriding config.

 clear - Clear both con/nocon triggers. Device should go back to
config setting

 status - Report current connection status

Notes: 'start' or 'reset' may reboot unit depending on modem.
 'permoff' and 'on' will make config changes when called from the
command line

Example Output

Here are few examples of status. Actual status message may differ on your device depending on which modem iscellmodemconnect.pl
installed and interface configurations.

Status of Cell Modem Up

[root@SNgateway-v4_23_RC-99-22 ~]# cellmodemconnect.pl status
Interface wwan0 is up

Status of Cell Modem Off/Down

[root@SNgateway-v4_24_BETA-48 tmp]# cellmodemconnect.pl status

No Cell modem interfaces are up
Activation status : Searching
Data connection : Data Retry

[root@SNgateway-v4_23_RC-99-22 ~]# cellmodemconnect.pl status
No Cell modem interfaces are up
Activation status : Reg Home
Data connection : Data Retry

Cellular statistics

Detailed cellular statistics are located in log file. For more details, see page./var/log/wireless.cardstats System Statistics

Lighttpd testing

When source code is updated and custom patched (to include system authentication) it needs to be tested.lighttpd

Current version 1.4.45 (.1)

Previous version source was modified/changed to upload large files into one big file chunk in /tmp/. The reason is, at the time, the source would
not clean up the small file pieces as it globbed them back together in order, resulting in double-memory being used until the last chunk was pieced
into the main file final name. This also resulted in the gau source and cgi scripts needing to be custom modified to handle the custom file code.

Now the current version removes the pieces as needed, and manages memory much more efficiently. So the gau source and cgi scripts can use
"normal" file operating procedures to handle the files.

GAU Pages

A sample of some of the gau pages that need to be tested with the latest lighttpd code.

Upload Pages :

Package Install - verify packages upload and install properly

Firmware Update - Verify firmware images upload and apply properly

Certificate Manager - Verify certificates upload and install correctly

No cellular interface available. No sim card

Cellular modem is off. Sim card is available and active.

Cellular statistics in will not be updated if cellular modem is off./var/log/wireless.cardstats
/var/log/wireless.cardstats does not get removed when cell modem is stopped. It is left at last updated state.
During cell modem start up / reset, will be removed until modem is back up and running./var/log/wireless.cardstats

https://redlion.atlassian.net/wiki/spaces/PP/pages/96600115/System+Statistics
https://www.lighttpd.net/

Download Pages :

Data Logger

Gwlnx log files

Gatherstats / Gatherconfigs

SD Card MAnager (Sentry)

Upload / Download Pages :

Configuration Manager

Other pages with upload and or download capabilities ?

Batch IO page?

IO Register page ?

Test IO page ?

Other pages

Admin Access - test http / https switching

SN Proxy Settings - test proxy (which is a separate lighttpd process)

SMS Messages

Overview
Compatible Sierra Modules
SMS Directory Structure

Process SMS file order example
SMS Character set

Sending SMS Messages
Format for SMS file for sending :
Example
Output

Success log output
Failed log output

Receiving SMS Messages
File format of received SMS Message :
Example Output

Testing Long SMS
Incoming SMS
Test Outgoing Basic ASCII Character Set

Supported character sets
RAM-99xx/RAM-69xx
All others
Encoding issues:

Addendums

Basic Instructions for Sending and Receiving of SMS Messages with SN-SDK

This document pertains to Sixnet / Red Lion build versions 3.12 and higher.

1.
2.
3.
4.

Overview

Compatible Sierra Modules

Following modules are compatible for SMS messaging. SMS messaging may be limited by the plan provided by the cellular provider.

MC572x (CDMA)
MC7304, MC7330, MC7354
MC7770
MC8705, MC8790, MC8795

SMS Directory Structure

Directories should be created automatically for storing SMS files:

/tmp/sms/send/ - Directory to hold SMS messages in queue until sent.

/tmp/sms/send_fail/ - Directory to hold any SMS messages that have failed to be sent.

/tmp/sms/send_ok/ - Directory to hold all SMS messages that have been sent successfully. (Available from version 3.18/4.18 and up).

/tmp/sms/recv_parts/ - Directory to hold SMS messages that are part of a multi-part message. These messages will either be reassembled
and placed in /tmp/sms/recv/ when all of the parts arrive, or removed after 30 mins

/tmp/sms/recv/ - Directory to hold SMS messages that the unit have .received

/tmp/sms/recv_post/ - A Directory to hold messages after they have been processed from /tmp/sms/recv/. An external SMS
processor should move the file here when finished.

Process SMS file order example

 SMS arrives in /tmp/sms/recv/sms_msg_6185551212_20170626_095051.1
External parser processes SMS file sms_msg_6185551212_20170626_095051.1
External process finishes processing file and moves it to /tmp/sms/recv_post/
Cell-modem control process checks for files older than 24 hours and deletes them/tmp/sms/recv_post/

SMS Character set

Only ASCII characters are accepted for SMS messages. Unicode characters could be sent/received, but will not be readable.

Sending SMS Messages

SMS data should be written to a plain text file with a unique file name, ex: /tmp/sms_send-01-02-03, and then moved/copied into /tmp/sms/send/.

Actual file name is irrelevant. Unique existence in the directory is important.

Outside processes process files in SHOULD NOT /tmp/sms/recv_parts/

SMS Messages in directories will be kept for 24 hours or until reboot., send_fail, send_ok recv and recv_post

SMS Messages in /tmp/sms/recv_parts/ will be removed after processing or the age is 30 mins

1.

2.

3.

4.

Format for SMS file for sending :

TO=6185551212
MSG=How are you?

The field is the recipient's phone number or text number. Must be at least 4 digits long. No dashes.TO=
The field is the message to send.MSG=
The field must be at the bottom of the file so it can contain any <CR> and <LF> characters.MSG=
Max characters is 918. Messages larger than 918 2characters will be truncated.
Fields must be on separate lines.

Once this /tmp/sms_send-01-02-03 file is written, it must be moved to the directory. With this in mind, when a program is/tmp/sms/send/
sending an SMS message, it should write out a temporary file with all of the data in it and then use the Linux mv -f command to move the file into
place for completeness.

Example

Program writes file /tmp/sms_send-01-02-03 with content:

TO=6185551212
MSG=Test Message 123

Program runs the command

mv -f /tmp/sms_send-01-02-03 /tmp/sms/send/

The file should disappear in a few seconds. If it does not, the system might be getting an error/tmp/sms/send/sms_send-01-02-03
sending the message. After 3 attempts, the file will be moved to the directory for 24 hours./tmp/sms/send_fail/
Multiple files may be placed into the send/ directory. They will be processed in order of timestamp, oldest first.

Output

All successfully sent messages are copied to the directory. A time stamp is appended to the file name with format send_ok YYYYMMDD-hhmmss
.

All messages that failed to be sent, are copied to the directory. A time stamp is appended to the file name with format send_fail YYYYMMDD-hh
mmss.

Success log output

In the syslog file, one should see something like this for GSM modems (MC8790, MC8795, MC7700, MC8705):

Oct 18 09:50:09 generic_watch: Reading SMS File
/tmp/sms/send/sms_send=01-02-03
Oct 18 09:50:10 generic_watch: Send Success: TO=6185551212, MSG=Test
Message 123

In the syslog file, one should see something like this for GSM modems (, ,):MC7304 MC7330 MC7354

Mar 15 21:38:05 swi_qmi_watch[1577]: Reading SMS File
/tmp/sms/send/smsTest.txt
Mar 15 21:38:05 swi_qmi_watch[1577]: SMS Send Mode: CDMA/3GPP
Mar 15 21:38:05 swi_qmi_watch[1577]: Attempting to send SMS Message
TO=6185551212, MSG=Just a test, ID=3
Mar 15 21:38:06 swi_qmi_watch[1577]: Send Success: TO=6185551212,
MSG=Just a test

In the syslog file, one should see something like this for CDMA modems (,):MC5727 MC5728

Oct 18 11:22:49 jbm_swi_vz: Reading SMS File
/tmp/sms/send/sms_send=01-02-03
Oct 18 11:22:50 jbm_swi_vz: SendSMS: Attempting to Send SMS Message
Oct 18 11:22:53 jbm_swi_vz: Notify: SMS message sent.
Oct 18 11:22:53 jbm_swi_vz: Notify: Call disconnected, Call State :
0x4040, Reason : 10

Failed log output

A failure should look something like this for GSM modems (, , ,):MC8790 MC8795 MC7700 MC8705

Oct 18 09:51:17 generic_watch: Reading SMS File
/tmp/sms/send/sms_send=01-02-03Oct 18 09:51:17 generic_watch: Got ERROR
(not CMS error) trying to send SMS to 'fail'
Oct 18 09:51:17 generic_watch: Send #1 Failed: TO=6185551212, MSG=this
message should fail?? (truncated)
Oct 18 09:52:04 generic_watch: Reading SMS File
/tmp/sms/send/sms_send=01-02-03
Oct 18 09:52:04 generic_watch: Got ERROR (not CMS error) trying to send
SMS to 'fail'
Oct 18 09:52:04 generic_watch: Send #2 Failed: TO=6185551212, MSG=this
message should fail?? (truncated)
Oct 18 09:52:50 generic_watch: Reading SMS File
/tmp/sms/send/sms_send=01-02-03
Oct 18 09:52:50 generic_watch: Got ERROR (not CMS error) trying to send
SMS to 'fail'
Oct 18 09:52:50 generic_watch: Send #3 Failed : TO=6185551212, MSG=this
message should fail?? (truncated)
Oct 18 09:52:50 generic_watch: Max send attempt, moving file to
/tmp/sms/send_fail/sms_send=01-02-03.20121018-

The Call disconnected message does not mean the data connection dropped. This is the SMS call closing a channel.

A failure should look something like this for GSM modems (, ,):MC7304 MC7330 MC7354

Mar 16 12:56:43 swi_qmi_watch[25164]: Reading SMS File
/tmp/sms/send/testsms
Mar 16 12:56:43 swi_qmi_watch[25164]: SMS Send Mode: UMTS/3GPP
Mar 16 12:56:43 swi_qmi_watch[25164]: Attempting to send SMS Message
TO=6185551212, MSG=Hi how are you, ID=4
Mar 16 12:56:43 swi_qmi_watch[25164]: ERROR: SLQSSendSMS() returned
0x41C (eQCWWAN_ERR_QMI_DEVICE_NOT_READY), unable to send SMS, code
0xFFFFFFFF
Mar 16 12:56:43 swi_qmi_watch[25164]: Send #1 Failed: TO=6185551212,
MSG=Hi how are you (truncated)
Mar 16 12:56:54 swi_qmi_watch[25164]: Reading SMS File
/tmp/sms/send/testsms
Mar 16 12:56:54 swi_qmi_watch[25164]: SMS Send Mode: UMTS/3GPP
Mar 16 12:56:54 swi_qmi_watch[25164]: Attempting to send SMS Message
TO=6185551212, MSG=Hi how are you, ID=5
Mar 16 12:56:54 swi_qmi_watch[25164]: ERROR: SLQSSendSMS() returned
0x41C (eQCWWAN_ERR_QMI_DEVICE_NOT_READY), unable to send SMS, code
0xFFFFFFFF
Mar 16 12:56:54 swi_qmi_watch[25164]: Send #2 Failed: TO=6185551212,
MSG=Hi how are you (truncated)
Mar 16 12:57:06 swi_qmi_watch[25164]: Reading SMS File
/tmp/sms/send/testsms
Mar 16 12:57:06 swi_qmi_watch[25164]: SMS Send Mode: UMTS/3GPP
Mar 16 12:57:06 swi_qmi_watch[25164]: Attempting to send SMS Message
TO=6185551212, MSG=Hi how are you, ID=6
Mar 16 12:57:06 swi_qmi_watch[25164]: ERROR: SLQSSendSMS() returned
0x41C (eQCWWAN_ERR_QMI_DEVICE_NOT_READY), unable to send SMS, code
0xFFFFFFFF
Mar 16 12:57:06 swi_qmi_watch[25164]: Send #3 Failed : TO=6185551212,
MSG=Hi how are you
Mar 16 12:57:06 swi_qmi_watch[25164]: Max send attempt, moving file to
/tmp/sms/send_fail/testsms.20160316-125706

A failure should look something like this for CDMA modems (,):MC5727 MC5728

Oct 18 11:26:50 jbm_swi_vz: Reading SMS File
/tmp/sms/send/sms_send=01-02-03
Oct 18 11:26:54 jbm_swi_vz: SendSMS: Attempting to Send SMS Message
Oct 18 11:26:56 jbm_swi_vz: Notify: Retry Sending SMS message later.
Oct 18 11:26:56 jbm_swi_vz: Notify: Call disconnected, Call State : 0x0,
Reason : 10
Oct 18 11:27:27 jbm_swi_vz: SendSMS: Attempting to Send SMS Message
Oct 18 11:27:30 jbm_swi_vz: Notify: Retry Sending SMS message later.
Oct 18 11:27:30 jbm_swi_vz: Notify: Call disconnected, Call State : 0x0,
Reason : 10
Oct 18 11:28:01 jbm_swi_vz: SendSMS: Attempting to Send SMS Message
Oct 18 11:28:03 jbm_swi_vz: Notify: Retry Sending SMS message later.
Oct 18 11:28:03 jbm_swi_vz: Notify: Call disconnected, Call State : 0x0,
Reason : 10
Oct 18 11:28:34 jbm_swi_vz: SendSMS: Attempting to Send SMS Message
Oct 18 11:28:36 jbm_swi_vz: Notify: Call disconnected, Call State : 0x0,
Reason : 10
Oct 18 11:28:38 jbm_swi_vz: SMS Send Failed : TO=8005551212, MSG=Test
Message 123 (truncated to 50 chars)
Oct 18 11:28:38 jbm_swi_vz: Moving SMS file to
/tmp/sms/send_fail/sms_send=01-02-03.20121018-112838

Receiving SMS Messages

SMS messages received by the modem will show up in the directory /tmp/sms/recv/. That directory may not appear until a message is actually
received. SMS files in the /tmp/sms/recv/ will stay for 24 hours system time, or until the unit is rebooted.

Saved recieved SMS messages get the following file naming time stamp format:

sms_msg - . _YYYYMMDD_PhoneNumber hhmmss x

Where

PhoneNumber = phone number
YYYY = Year
MM = Month
DD = Day
hh = Hour
mm = Minute
ss = Second
x = an incremental digit that goes from 1 to 65535 and then starts over, not guaranteed to increment by 1 each time

File format of received SMS Message :

The Call disconnected message does not mean the data connection dropped. This is the SMS call closing a channel.

FROM=6185551212
TIME=10/18/12 - 08:49:26
PRI=Normal
MSG=Fine. How are you?

The is a date time field when the message was receivedTIME=
The is optional and may or may not be included.PRI=
The will always be the last field and include all test until the end of the file, including <LF>/<CR>MSG=

Example Output

Below is a system log of SMS Message recieved

Mar 15 15:59:46 swi_qmi_watch[1400]: Received SMS Message Storage Type:
0, Message Index: 0
Mar 15 15:59:47 swi_qmi_watch[1400]: Read UIM memory successful Message
Tag: 1, Message Format: 6
Mar 15 15:59:47 swi_qmi_watch[1400]: SMS RX Mode: UMTS
Mar 15 15:59:47 swi_qmi_watch[1400]: Got SMS from 9116185581212 at
15/03/16 - 15:59:45, Message: This is a test

Testing Long SMS

Some long SMS is supported, but not for all carriers.

Incoming SMS

Long incoming SMS should be supported on all carriers currently, except for Verizon. This may change in the future.

This example will show how a long incoming SMS might look on an AT&T account. Long SMS messages can contain up to 918 characters.

Sending the following text to a device:

This example illustrates how to write plain text in an HTML file. Blank
lines (as next line) are ignored. Similarly, if you press the Enter key,
you will not get a new paragraph. To illustrate this I am pressing Enter
right here ... and as you can see, the line continue. If you want to break
the line you need to enter the "P" tag, like right here ...

Will be broken up into 3 separate messages, and resembled on the device. Here is a sample log. Notice part 2 arrived, then part 1 and 3.

Jul 18 12:22:01 generic_watch[4455]: Received SMS Part 2/3 (ID: 73) from
8005551212 at 18/07/17 - 12:22:01, Message: not get a new paragraph. To
illustrate this I am pressing Enter right here ... and as you can see, the
line continue. If you want to break the line you
Jul 18 12:22:07 generic_watch[4455]: Received SMS Part 1/3 (ID: 73) from
8005551212 at 18/07/17 - 12:22:03, Message: This example illustrates how to
write plain text in an HTML file. Blank lines (as next line) are ignored.
Similarly, if you press the Enter key, you will
Jul 18 12:22:07 generic_watch[4455]: Received SMS Part 3/3 (ID: 73) from
8005551212 at 18/07/17 - 12:22:04, Message: need to enter the "P" tag, like
right here ...
Jul 18 12:22:09 generic_watch[4455]: Received SMS from 8005551212 at
18/07/17 - 12:22:03, Message: This example illustrates how to write plain
text in an HTML file. Blank lines (as next line) are ignored. Similarly, if
you press the Enter key, you will not get a new paragraph. To illustrate
this I am pressing Enter right here ... and as you can see, the line
continue. If you want to break the line you need to enter the "P" tag, like
right here ...

The message should be reassembled correctly when all the parts are present:

[root@RAM-123abc tmp]# cat
/tmp/sms/recv/sms_msg_8005551212_20170718-122209.1
FROM=8005551212
TIME=18/07/17 - 12:22:03
MSG=This example illustrates how to write plain text in an HTML file. Blank
lines (as next line) are ignored. Similarly, if you press the Enter key,
you will not get a new paragraph. To illustrate this I am pressing Enter
right here ... and as you can see, the line continue. If you want to break
the line you need to enter the "P" tag, like right here ...
[root@RAM-066e4f test_bad_parts]#

Test Outgoing Basic ASCII Character Set

Send from a device to a phone device. Paste the following into a file called /tmp/test.sms and replace <phone number> with the destination
number

TO=<phone number>
MSG=ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
123456789
! @ # $ % ^ & * () _ +
- =
[] \
{ } |
; '
: "
, . /
< > ?

Copy the the file into the send directoy and observe the system log :

[root@RAM-066e4f tmp]# cp test.sms /tmp/sms/send/
[root@RAM-066e4f tmp]# cat /var/log/messages| grep "Send Success"
Aug 12 09:08:47 generic_watch[5026]: Send Success: TO=8005551212,
MSG=ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 123456789 ! @ # $
% ^ & * () _ + - = [] \ { } | ; ' : " , . / < > ?
[root@RAM-066e4f tmp]#

The the recipient phone and verify that every character sent looks correct.

Supported character sets

RAM-99xx/RAM-69xx

7bit GSM Encoding/Decoding
8bit Encoding/Decoding

All others

7bit GSM Encoding/Decoding
8bit Decoding (inbound) only

Even though all characters can be encoded/decoded, it does not necessarily mean the character set is supported by the SMS
processing engine

For 7bit decoding, inbound characters with a hex value greater than 0x7F, including Greek letters, will be converted to a '?'

For 8bit decoding, inbound characters, Basic Latin ASCII and Latin-1 Supplement will be allowed. Other characters will be converted to
a '?'

1.
2.
3.
4.
5.

6.
7.

1.
2.
3.

4.

Encoding issues:

It has been noted on that characters in the ASCII BELL/Canada Basic Character Set Extension which are escaped and in 7-BIT encoding will be
changed by the network to their ASCII counterparts. That is '[' becomes '<', ']' becomes '>'. There is not current work around for this. It maybe
fixed in the future with USC2 encoding.

Addendums

Here are few notes to keep in mind when working with SMS messages.

If a unit reboots or looses power, (this includes received, sent okay, failed and to be sent) messages will be lost.all
A unit will not send messages if the modem is not activated.
A unit will not send messages during an activation or a update.PRL
A unit will not send or receive messages if SMS is not included with the account. This may or may not report errors when sending.
Incoming SMS messages currently only are written to files with the date/timestamp in the file name in /tmp/sms/recv/, example :
sms_msg20121018-130032
All SMS messages are deleted once they are 24 hours old (send_fail, send_ok and received).
Advanced SMS features such as attachments (pictures, MMS), and read/delivered receipts are not supported.

Sending Emails

Overview
Configuring the Device to Send Emails

Configuring with GUI
Configuring with XFGlib

Email Message Format
Email Message File Format
Message body length
Email Character set

Sending Emails
Example
Output

Success log output
Unsuccessful log output

Sending Emails with Attachments
email_attachment
Attachment Types
Example

Overview

Basic Instructions for Sending Email Messages with SN-SDK

This document pertains to Red Lion build versions 4.22 and higher.

Configuring the Device to Send Emails

In order to be able to send emails, the device needs to be configured. Once Email Client is configured and enabled, a directory /tmp/email/
will be created.

If directory does not exist, then this means that email client is either disabled or not configured. the /tmp/email/

Configuring with GUI

To configure Email Client with GUI interface,

Go to from the device GUI interfaceServices Email
Select fromYes Enable Email Support
Enter your email server setting and username password.

4.
5.

Click Apply
From , enter recipient email and click to verify that you have entered correct email settings.Email Settings Test Test Email

For more information on Email Client, please see Email Client section from device .User Guide

Configuring with XFGlib

To configure with XFGlib, run the following script with the email server details

require "/etc/jbm/xfglib.pl";

my %xml_settings = (
 enable => "y",
 server => "smtp.youremailserver.com",
 port => "465",
 sender => "senderemail@youremailserver.com",
 username => "senderemailusername",
 password => "senderemailpassword"
);
&xfg_set_multi_attribute("email", \%xml_settings);

&xfg_commit("apply");

For more information on XFGlib, please and .XFGlib documentation XFGlib User Guide

Email Message Format

Email Message File Format

The Email message file is a plain text file. All HTML tags will not be interpreted. The Email message contain the following two lines: anmust To:
d Subject:

To: myemail@myserver.net
Subject: Email test

The field is the recipient's email address. Must be in a valid email address format. If an invalid or non existing email is entered, butTo:
with a valid format, the email will be successfully sent. All failed to deliver notifications will be in the email box on the server. Failed to
deliver notification cannot be detected by Ram Devices.
The field is the subject line for the email. field may be left blank/empty, but characters " " beSubject: Subject: Subject: MUST
present.

The and : lines can be in either order, but must be the first two line of the message file. Everything else will be in the body of the To: Subject
email message.

http://www.redlion.net/documentation
https://redlion.atlassian.net/wiki/spaces/PP/pages/90538244/xfglib+-+multi-subsystem+xml+configurator
https://redlion.atlassian.net/wiki/spaces/PP/pages/92668092/XFGLib+User+Guide

1.

2.

3.

To: myemail@myserver.net
Subject: Sample Email Test

1 Monday Tuesday Wednesday Thursday Friday Saturday Sunday Monday
Tuesday Wednesday Thursday Friday Saturday Sunday Monday Tuesday
Wednesday Thursday Friday Saturday Sunday Monday Tuesday Wednesday
Thursday
2 January February March April May June July August September October
November December January February March April May June July August
September October November December January

Message body length

The outer limit of message body has not been tested and may depend on the email service provider.

A 2MB message has been successfully tested and sent with Gmail.

Email Character set

Email messages can contain any set of characters. The limitation may be based on your email server.

Sending Emails

For email messages to be sent, all email message files need to be copied and or moved to directory. Once a message is inthe /tmp/email
the directory, it will be sent automatically.

Example

Program writes the file with the content:/tmp/emailTest.txt

To: myemail@myserver.net
Subject: Sample Email Test
1 Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Program runs the command

mv -f /tmp/emailTest.txt /tmp/email

The file should disappear in a few seconds./tmp/email/emailTest.txt

Output

Success log output

Example of Email message file

In the syslog file, the following should be seen when email is sent successfully:

Mar 17 12:48:33 EmailAction: Attempting to send the email in
emailTest.txt file
Mar 17 12:48:34 EmailAction: successfully sent the email in
emailTest.txt file

Unsuccessful log output

In the syslog file, one may see something like this when email is was not sent successfully:

Mar 17 12:47:21 EmailAction: Rejected: The emailTest.txt file does not
appear to be a valid email, deleting the emailTest.txt file

Mar 17 12:23:54 EmailAction: Attempting to send the email in
emailTest.txt file
Mar 17 12:23:54 EmailAction: Could not send the email in emailTest.txt
file, reason UNKOWN

Sending Emails with Attachments

To send emails with attachments, run the following command . Placing emails and attachments into the direcemail_attachment /tmp/email/
tory send emails with attachments. will not

email_attachment

/usr/local/bin/email_attachment allows you to send email with attachments.

/usr/local/bin/email_attachment[-d] [-e] <PathToEmailMessage> [-a]
<PathToAttachment> <PathToAnotherAtachment> [-s] [-z]

Option Requirement Definition

-h <help> - Displays the usage information summary you are now reading

-d <debug mode> Optional print debug messages to system log.

Failed to send Example 1

Failed to send Example 2

Sending emails with attachments is available in version 4.24 and later.

-e <email file> Required Specify path to email message. Must be only one email message file.

-a <attachment(s)> Optional Specify path to attachment file. Can be multiple attachments.

-s <standalone> Optional Send the email as standalone via email_attachment script

-z <files.zip> Optional Zip the attachment(s) before sending the email. All attachments will be archived into files.zip

If option -a and attachments are not specified, the email will be sent without attachments.

Attachment Types

Attachments can be of any type and size. Total attachments file size should be no greater than 20MB.

Example

Let say we have an email we want to send with following attachments located in /vault/myprocessdata/

sampleLog.log
sampleZip.zip
sampleText.txt
ReadMeFile
emailMessage.txt

We would execute the following

email_attachment -e /vault/myprocessdata/emailMassage.txt -a
/vault/myprocessdata/sampleLog.log /vault/myprocessdata/sampleZip.zip
/vault/myprocessdata/sampleText.txt /vault/myprocessdata/ReadMeFile

or for simplicity

cd /vault/myprocessdata/
email_attachment -e emailMassage.txt -a sampleLog.log sampleZip.zip
sampleText.txt ReadMeFile

System Statistics

System Information
General Device Information

DEVINFO_CONNECTION_STATUS
DEVINFO_TIME_SOURCE
DEVINFO_DEVICE_RESETTING

Cellular Statistics
Data Usage (vnstat)
On Board Statistics
Version

System Information

Several commands exist to gather specific information about the device that can be executed by command line. The examples below are used
with a RAM 9931 unit without active cellular capabilities. Results of these commands may vary.

General Device Information

Executing "device_info.pl" will display general information about the device.

DEVINFO_MANUFACTURER=Red Lion
DEVINFO_MODEL_NUMBER=RAM-9931
DEVINFO_MODEL_PLATFORM_TYPE=RAM
DEVINFO_MODEL_PLATFORM=9XXX
DEVINFO_MODEL_FAMILY=99XX
DEVINFO_DEVICE_SERIALNO=123X45678910112
DEVINFO_DEVICE_MODEM_ID=12345678
DEVINFO_DEVICE_PRL=
DEVINFO_DEVICE_RSSI=-125
DEVINFO_DEVICE_BARS=0
DEVINFO_DEVICE_MDN=Unavailable
DEVINFO_CONNECTION_STATUS=0
DEVINFO_TIME_SOURCE=0
DEVINFO_DEVICE_RESETTING=0

DEVINFO_CONNECTION_STATUS

This field checks if the flag file "wirelessdial_dialing" exists. This file represents a connection that was made or a connection that is being
attempted. The value is either 0 for no connection, or 1 for connected.

DEVINFO_TIME_SOURCE

This field represents which time source the device is syncing to. The value is either 0 for no syncing, 1 for syncing to the cell modem, or 2 syncing
to NTP time.

DEVINFO_DEVICE_RESETTING

This field us used to determine is something is wrong and the modem needs to reset. If the modem is resetting, the value is 1, otherwise it is 0.

Cellular Statistics

Executing the "cat /var/log/wireless.cardstats" command will display cellular information about the device.

Data Usage (vnstat)

device_info.pl

Not all fields are available on all modules.
/var/log/wireless.cardstats will not be updated if cellular modem is off.

cat /var/log/wireless.cardstats

Using the "vnstat" command with no arguments will produce the following result.

rx / tx / total / estimated
 can0: Not enough data available yet.
 (eth0):
 Mar '16 429.00 MiB / 503.24 MiB / 932.24 MiB / 2.35
GiB
 yesterday 106.25 MiB / 166.17 MiB / 272.41 MiB
 today 25.53 MiB / 33.28 MiB / 58.81 MiB / 59
MiB

 eth1: Not enough data available yet.
 (usb0):
 Mar '16 35.84 MiB / 9.90 MiB / 45.74 MiB / 113.00
MiB
 yesterday 629 KiB / 71 KiB / 700 KiB
 today 1.03 MiB / 112 KiB / 1.14 MiB / --

 wlan0: Not enough data available yet.
 wwan0: Not enough data available yet.
 wwan1: Not enough data available yet.
 ip6tnl0: Not enough data available yet.
 dummy0: Not enough data available yet.

To get information about a particular interface, execute the command using the -i option followed by the name of the interface. Executing "vnstat
-i eth0" will display information about eht0 exclusively.

vnstat (no arguments)

Database updated: Sat Mar 12 23:20:22 2016

 (eth0) since 12/31/69

 rx: 646.54 MiB tx: 727.70 MiB total: 1.34 GiB

 monthly
 rx | tx | total | avg. rate

------------------------+-------------+-------------+---------------
 Mar '16 429.10 MiB | 503.36 MiB | 932.46 MiB | 7.38
kbit/s

------------------------+-------------+-------------+---------------
 estimated 1.08 GiB | 1.27 GiB | 2.36 GiB |

 daily
 rx | tx | total | avg. rate

------------------------+-------------+-------------+---------------
 yesterday 106.25 MiB | 166.17 MiB | 272.41 MiB | 25.83
kbit/s
 today 25.63 MiB | 33.39 MiB | 59.02 MiB | 5.75
kbit/s

------------------------+-------------+-------------+---------------
 estimated 25 MiB | 33 MiB | 58 MiB |

By executing "ls /storage/vnstat", a list of all the interfaces vnstat is keeping track of will be displayed.

can0 dummy0 eth0 eth1 ip6tnl0 usb0 wlan0 wwan0
wwan1

While the output of vnstat is great for visualization, it is not practical to parse with a script. To get the information in a parse-able format, use the
--exportdb option.

On Board Statistics

To get information about on board statistics, the Read command can be executed. The Read command gathers information from IODB registers.

vnstat -i eth0

ls /storage/vnstat

vnstat -i eth0 --exportdb

Special reserved IODB registers contain system information. To access these special registers, the register type and the register address need to
be known upon execution of the command.

Executing the Read command with no arguments will display a usage statement.

Usage: Read type startAddr numRegs

The following example executes the Read command with the type as 1 (Analog Out), the starting address as 1715 (RSSI Information), and the
number of registers as 1 to get the information in the RSSI register.

65411

The full list of registers and their functionality are in the User Guide under Appendix B found in the device specific knowledge base link on the Doc
 page. For more information about the Read command, follow this . umentation link

Version

By executing "cat /etc/version" the version information about the device will be displayed.

#Red Lion Version 4.24 160314 -- Tue Mar 15 00:21:11 CDT 2016
BUILD_MANU="Red Lion"
BUILD_VERSION="4.24.43.0"
BUILD_MAJORVER="4"
BUILD_MINORVER="24"
BUILD_MICROVER="43"
BUILD_RCVER="0"
BUILD_DATE="Tue Mar 15 00:21:11 CDT 2016"
BUILD_TARGET="btg25"
BUILD_ARCH="arm"
BUILD_TAG="160314"
BUILD_HASH="6430391df47961bfe2a82cc1b5352e1874781be8"

Getting GPS data from the Device

This page will talk about how to get GPS data from the device. There are four ways to get GPS data.

The Read command references addresses as 0 based.

Read (No Arguments)

Read 1 1715 1

Do Not Modify This File

cat /etc/version

http://www.redlion.net/documentation
http://www.redlion.net/documentation
https://redlion.atlassian.net/wiki/spaces/MS/pages/89653777

gpsd port 2947
Changes to compile cpgs.c

In Makefile
In cgps.c

Example output
NMEA Stream from /dev/gps_out
GPS data parsing /var/log/wireless.gpscurrent
GPS data from IODB registers
GPS data from SNMP MIB

Requirements to obtain GPS data from SNMP MIB
List of supported MIBS

gpsd port 2947

Real time GPS data can be read directly from GPSd.

More information on gpds can be found here .http://www.catb.org/gpsd/client-howto.html

A good example of reading gps data with gpsd is in from .cgps.c http://www.catb.org/gpsd/

Changes to compile cpgs.c

Follwing changes are needed to me made to compile cgps.c:

In Makefile

In the make file, add the following libraries toe list: LDFLAGS

-lgps -lm -lncurses

In cgps.c

Since cgps.c is pure C code, but we use C++ complier, Extern "C" definition needs to be added to the file.

At the top of the cpgs.c file add the following

#ifdef __cplusplus
extern "C" {
#endif

and at the end of the file

#ifdef __cplusplus
}
#endif

Example output

Here is an example output from cgps.c

http://www.catb.org/gpsd/client-howto.html
http://www.catb.org/gpsd/

+---++--------------------------
-------+
| Time: 2016-03-24T17:20:13.000Z ||PRN: Elev: Azim: SNR:
Used: |
| Latitude: 34.727701 N || 37 00 000 00
Y |
| Longitude: 87.336630 W || 37 00 000 00
Y |
| Altitude: 724.4 ft || 37 00 000 00
Y |
| Speed: 0.0 mph ||
|
| Heading: 0.0 deg (true) ||
|
| Climb: n/a ||
|
| Status: 3D FIX (196 secs) ||
|
| Longitude Err: n/a ||
|
| Latitude Err: n/a ||
|
| Altitude Err: +/- 105 ft ||
|
| Course Err: n/a ||
|
| Speed Err: n/a ||
|
| Time offset: -214601.397 ||
|
| Grid Square: EM48tr ||
|
+---++--------------------------
-------+

NMEA Stream from /dev/gps_out

If your application uses a NMEA parser, you could just tap into stream and parse for any GPS data needed. /dev/gps_out

GPS data parsing /var/log/wireless.gpscurrent

GPS data can be also gathered from parsing log file. /var/log/wireless.gpscurrent

Please note, log file is updated about every 5 seconds.wireless.gpscurrent

GPS data from IODB registers

GPS IODB tag information can be found device GUI interface under . GPS IODB registers are 1201 to 1222. Automation > Tags

Here is the example below to get IODB value with C code.

cat /var/log/wireless.gpscurrent

Please note, GPS IODB values are updated about every 5 seconds.

Please note that IODB register mentioned on are one (1) based, but IODB registers used with code are zero (0)Automation > Tags
based.

int i;
short gps_values[22];

IODBRead(1, 1200, 22, (void *)&gps_values, NULL);

for (i = 0; i < 22; i++)
{
 printf("gps_values[%d]: %d\n", i, gps_values[i]);
}

// The output will be:
//gps_values[0]: 1606
//gps_values[1]: 5
//gps_values[2]: 1
//gps_values[3]: 38
//gps_values[4]: 43
//gps_values[5]: 40
//gps_values[6]: 0
//gps_values[7]: 44
//gps_values[8]: 7278
//gps_values[9]: 94
//gps_values[10]: 20
//gps_values[11]: 14
//gps_values[12]: 1
//gps_values[13]: -90
//gps_values[14]: 3372
//gps_values[15]: 20
//gps_values[16]: 2314
//gps_values[17]: 0
//gps_values[18]: 0
//gps_values[19]: 0
//gps_values[20]: 0
//gps_values[21]: 1

GPS IODB data can be also retrieved with Read command.

GPS IODB read with C code

1.
2.
3.
4.

[root@SNgateway-v4_24_BETA-47 tmp]# Read 1 1200 22
 1606 5 1 44 43 40
0 38
 7278 94 20 14 1 65446
3372 20
 2314 0 0 0 0 1

GPS data from SNMP MIB

GPS information can be obtained from your MIB Browser if the SNMP Agent is enabled on the device via GUI .Services > SNMP Agent

Requirements to obtain GPS data from SNMP MIB

Enable the SNMP Agent on the device by the settings.Applying
Download MIB to your PC by clicking button.Download MIB
Load the downloaded MIB to your and set up the device IP address.MIB Browser
Select gpscurrent from your MIB Browser tree.MIB Tree > iso.org.dod.internet > private > enterprises > redlionram > system

List of supported MIBS

Name CurrentGpsValid

OID .1.2.6.1.4.1.1890.1.7.1

MIB RED-LION-RAM-MIB

Syntax DISPLAYSTRING

Access read-only

Status mandatory

DefVal

Indexes

Descr GPS Current Valid Fixed Quality (0 = Invalid, 1 = Valid)

Name CurrentGpsLat

OID .1.2.6.1.4.1.1890.1.7.2

MIB RED-LION-RAM-MIB

Syntax DISPLAYSTRING

Access read-only

Status mandatory

DefVal

Indexes

Descr GPS Current Latitude Degrees

Read GPS IODB command

Name CurrentGpsLong

OID .1.2.6.1.4.1.1890.1.7.3

MIB RED-LION-RAM-MIB

Syntax DISPLAYSTRING

Access read-only

Status mandatory

DefVal

Indexes

Descr GPS Current Longitude Degrees

Name CurrentGpsAlt

OID .1.2.6.1.4.1.1890.1.7.4

MIB RED-LION-RAM-MIB

Syntax DISPLAYSTRING

Access read-only

Status mandatory

DefVal

Indexes

Descr GPS Current Altitude Tenths of Meter (280.2 = 2802)

Name CurrentGpsTimeStamp

OID .1.2.6.1.4.1.1890.1.7.5

MIB RED-LION-RAM-MIB

Syntax DISPLAYSTRING

Access read-only

Status mandatory

DefVal

Indexes

Descr GPS Current Time Stamp

Name CurrentGpsNumSat

OID .1.2.6.1.4.1.1890.1.7.6

MIB RED-LION-RAM-MIB

Syntax DISPLAYSTRING

Access read-only

Status mandatory

DefVal

Indexes

Descr GPS Current Number of Satellites

Name CurrentGpsFtfromcp

OID .1.2.6.1.4.1.1890.1.7.7

MIB RED-LION-RAM-MIB

Syntax DISPLAYSTRING

Access read-only

Status mandatory

DefVal

Indexes

Descr GPS Current Feet From Lockdown Center Point

Name CurrentGpsSpeed

OID .1.2.6.1.4.1.1890.1.7.8

MIB RED-LION-RAM-MIB

Syntax DISPLAYSTRING

Access read-only

Status mandatory

DefVal

Indexes

Descr GPS Current Speed, SOG tenths of knots (50.1 = 501)

Name CurrentGpsCourse

OID .1.2.6.1.4.1.1890.1.7.9

MIB RED-LION-RAM-MIB

Syntax DISPLAYSTRING

Access read-only

Status mandatory

DefVal

Indexes

Descr GPS Current Course, Heading in tenths of degree (280.3 = 2803)

Name GpsSource

OID .1.2.6.1.4.1.1890.1.7.10

MIB RED-LION-RAM-MIB

Syntax DISPLAYSTRING

Access read-only

Status mandatory

DefVal

Indexes

Descr GPS Source of Data (1 = Internet; 3 = Fixed)

Name GpsLockdownState

OID .1.2.6.1.4.1.1890.1.7.11

MIB RED-LION-RAM-MIB

Syntax DISPLAYSTRING

Access read-only

Status mandatory

DefVal

Indexes

Descr GPS Current Lockdown State (0 = Monitor; 5 = Lockdown; 7-9 = Violation)

Name GpsLockdownRadius

OID .1.2.6.1.4.1.1890.1.7.12

MIB RED-LION-RAM-MIB

Syntax DISPLAYSTRING

Access read-only

Status mandatory

DefVal

Indexes

Descr GPS Current Lockdown Radius (ft), Units in Feet as calculated from centerpoint

AT Command Interface

Input
Output

Formatted (at_cmd_out)
Raw (at_cmd_out_raw)

Sample Script

Input

AT commands are executed by writing them to a file called "at_cmd_in" located in the /tmp directory.

echo "ATI" > /tmp/at_cmd_in

First available in 4.21

Not available on 3G Sprint/Verison products like 66xx series units.

Example of Running ATI command from command line.

Output

While the script in the sample script section prints out the contents of the formatted file as seen below, the raw contents can be viewed by running
the command "cat /tmp/at_cmd_out_raw".

Formatted (at_cmd_out)

./test_at_cmd_in.sh
===
 Sending : ATI
 Output :

ATI
Manufacturer: Sierra Wireless, Incorporated
Model: MC7354
Revision: SWI9X15C_05.05.16.03 r22385 carmd-fwbuild1 2014/06/04 15:01:26
MEID: 11111111111111
ESN: 1111111111, 80FFFFFF
IMEI: 111111111111111
IMEI SV: 13
FSN: J1111111111111
+GCAP: +CIS707-A, CIS-856, CIS-856-A, +CGSM, +CLTE2, +MS, +ES, +DS,
+FCLASS

OK
===

Raw (at_cmd_out_raw)

Formatted Output

cat /tmp/at_cmd_out_raw
ATI
Manufacturer: Sierra Wireless, Incorporated
Model: MC7354
Revision: SWI9X15C_05.05.16.03 r22385 carmd-fwbuild1 2014/06/04 15:01:26
MEID: 11111111111111
ESN: 1111111111, 80FFFFFF
IMEI: 111111111111111
IMEI SV: 13
FSN: J1111111111111
+GCAP: +CIS707-A, CIS-856, CIS-856-A, +CGSM, +CLTE2, +MS, +ES, +DS,
+FCLASS

OK

Sample Script

This script follows a simple procedure of writing to an a file called "at_cmd_in", followed by waiting for an "at_cmd_out" file, and then reading that
file.

cat /tmp/at_cmd_out_raw

#!/bin/bash

INFILE="/tmp/at_cmd_in"
OUTFILE="/tmp/at_cmd_out"
OUTFILERAW="/tmp/at_cmd_out_raw"

rm -f $OUTFILE
rm -f $OUTFILERAW

echo "ATI" > $INFILE
sleep 2
count=0
while [$count -le 5]; do

 if [-e "$OUTFILE"]; then
 break
 fi
 sleep 1
 count=$(($count+1))
done

if [-e "$OUTFILE"]; then
 cat $OUTFILE
 exit
else
 echo "Error: File not present"
fi

Include Libraries

When writing your application, please use these libraries instead of supplying your own to avoid redundancy and duplicate libraries being installed
on the device. If you need a library that is not already installed on the device, you may included it with your package. There are a few libraries
available with EDLK toolchain that are not used by RAM devices so they are not installed onto the device.

Following libraries as of version 4.23.are included on the RAM device

\lib\
\usr\lib\

test_at_cmd_in.sh

The device has a limited amount of space. Using static library includes and and supplying duplicate copies of shared libraries may
result in application not being able to install or getting corrupted on re-flash.

\lib\

ld-2.6.so
ld-linux.so.3 -> ld-2.6.so
libBrokenLocale-2.6.so
libBrokenLocale.so.1 -> libBrokenLocale-2.6.so
libSegFault.so
libanl-2.6.so
libanl.so.1 -> libanl-2.6.so
libbz2.so -> libbz2.so.1.0.4
libbz2.so.1 -> libbz2.so.1.0.4
libbz2.so.1.0.4
libc-2.6.so
libc.so.6 -> libc-2.6.so
libcap.so.1 -> libcap.so.1.10
libcap.so.1.10
libconfuse.so -> libconfuse.so.0.0.0
libconfuse.so.0 -> libconfuse.so.0.0.0
libconfuse.so.0.0.0
libcrypt-2.6.so
libcrypt.so.1 -> libcrypt-2.6.so
libcrypto.so.0.9.8 -> libcrypto.so.1.0.0
libcrypto.so.1.0.0
libcrypto.so.2 -> libcrypto.so.1.0.0
libcurl.so -> libcurl.so.4.3.0
libcurl.so.4 -> libcurl.so.4.3.0
libcurl.so.4.3.0
libdl-2.6.so
libdl.so.2 -> libdl-2.6.so
libexslt.so -> libexslt.so.0.8.13
libexslt.so.0 -> libexslt.so.0.8.13
libexslt.so.0.8.13
libftdi1.so
libgcc_s.so.1
libgmp.so -> libgmp.so.3.4.4
libgmp.so.3 -> libgmp.so.3.4.4
libgmp.so.3.4.4
libgps.so.22 -> libgps.so.22.0.0
libgps.so.22.0.0
libgpsd.so.22 -> libgpsd.so.22.0.0
libgpsd.so.22.0.0
libiw.so -> libiw.so.30
libiw.so.30
liblzo2.so.2
libm-2.6.so
libm.so.6 -> libm-2.6.so
libmemusage.so
libnetfilter_conntrack.so -> libnetfilter_conntrack.so.3.0.1
libnetfilter_conntrack.so.3 -> libnetfilter_conntrack.so.3.0.1
libnetfilter_conntrack.so.3.0.1
libnfnetlink.so -> libnfnetlink.so.0.2.0
libnfnetlink.so.0 -> libnfnetlink.so.0.2.0

libnfnetlink.so.0.2.0
libnl.so -> libnl.so.1.1.4
libnl.so.1 -> libnl.so.1.1.4
libnl.so.1.1.4
libnsl-2.6.so
libnsl.so.1 -> libnsl-2.6.so
libnss_compat-2.6.so
libnss_compat.so.2 -> libnss_compat-2.6.so
libnss_dns-2.6.so
libnss_dns.so.2 -> libnss_dns-2.6.so
libnss_files-2.6.so
libnss_files.so.2 -> libnss_files-2.6.so
libnss_hesiod-2.6.so
libnss_hesiod.so.2 -> libnss_hesiod-2.6.so
libnss_nis-2.6.so
libnss_nis.so.2 -> libnss_nis-2.6.so
libnss_nisplus-2.6.so
libnss_nisplus.so.2 -> libnss_nisplus-2.6.so
libospf.so -> libospf.so.0.0.0
libospf.so.0 -> libospf.so.0.0.0
libospf.so.0.0.0
libospfapiclient.so -> libospfapiclient.so.0.0.0
libospfapiclient.so.0 -> libospfapiclient.so.0.0.0
libospfapiclient.so.0.0.0
libpam.so.0 -> libpam.so.0.81.6
libpam.so.0.81.6
libpcap.so -> libpcap.so.1.1.1
libpcap.so.1 -> libpcap.so.1.1.1
libpcap.so.1.1.1
libpcprofile.so
libpopt.so -> libpopt.so.0.0.0
libpopt.so.0 -> libpopt.so.0.0.0
libpopt.so.0.0.0
libproc-3.2.7.so
libpthread-2.6.so
libpthread.so.0 -> libpthread-2.6.so
libresolv-2.6.so
libresolv.so.2 -> libresolv-2.6.so
librt-2.6.so
librt.so.1 -> librt-2.6.so
libssl.so.0.9.8 -> libssl.so.1.0.0
libssl.so.1.0.0
libssl.so.2 -> libssl.so.1.0.0
libssp.so.0 -> libssp.so.0.0.0
libssp.so.0.0.0
libstdc++.so.6 -> libstdc++.so.6.0.9
libstdc++.so.6.0.9
libstunnel.so
libtermcap.so.2 -> libtermcap.so.2.0.8
libtermcap.so.2.0.8

libthread_db-1.0.so
libthread_db.so.1 -> libthread_db-1.0.so
libtinyxml.so -> libtinyxml.so.1.0.1
libtinyxml.so.1 -> libtinyxml.so.1.0.1
libtinyxml.so.1.0.1
libusb-0.1.so -> libusb-0.1.so.4.4.4
libusb-0.1.so.4 -> libusb-0.1.so.4.4.4
libusb-0.1.so.4.4.4
libusb-1.0.so -> libusb-1.0.so.0.0.0
libusb-1.0.so.0 -> libusb-1.0.so.0.0.0
libusb-1.0.so.0.0.0
libutil-2.6.so
libutil.so.1 -> libutil-2.6.so
libuv.so -> libuv.so.1
libuv.so.1
libvolume_id.so -> libvolume_id.so.1.0.9
libvolume_id.so.1 -> libvolume_id.so.1.0.9
libvolume_id.so.1.0.9
libwrap.so.0 -> libwrap.so.0.7.6
libwrap.so.0.7.6
libxml2.so -> libxml2.so.2.7.7
libxml2.so.2 -> libxml2.so.2.7.7
libxml2.so.2.7.7
libxslt.so -> libxslt.so.1.1.22
libxslt.so.1 -> libxslt.so.1.1.22
libxslt.so.1.1.22
libxtables.la
libxtables.so -> libxtables.so.0.0.0
libxtables.so.0 -> libxtables.so.0.0.0
libxtables.so.0.0.0
libz.so.1 -> libz.so.1.2.3
libz.so.1.2.3

libzebra.so -> libzebra.so.0.0.0
libzebra.so.0 -> libzebra.so.0.0.0
libzebra.so.0.0.0

libcli.so -> libcli.so.1.9.5
libcli.so.1 -> libcli.so.1.9.5
libcli.so.1.9 -> libcli.so.1.9.5
libcli.so.1.9.5
libcommonc++.so -> libcommonc++.so.1
libcommonc++.so.1
libddioc++.so -> libddioc++.so.1.0.2
libddioc++.so.1 -> libddioc++.so.1.0.2
libddioc++.so.1.0.2
libfileimonitorc++.so -> libfileimonitorc++.so.1
libfileimonitorc++.so.1
libfilevecc++.so -> libfilevecc++.so.1
libfilevecc++.so.1
libloggerc++.so -> libloggerc++.so.1
libloggerc++.so.1
libsxiodbc++.so -> libsxiodbc++.so.1.3.2
libsxiodbc++.so.1 -> libsxiodbc++.so.1.3.2
libsxiodbc++.so.1.3.2
libtimerc++.so -> libtimerc++.so.1
libtimerc++.so.1
libtokenstrtlutablec++.so -> libtokenstrtlutablec++.so.1
libtokenstrtlutablec++.so.1

snupdate
Building Packages for Sixnet / Red Lion Wireless Devices (D-Series; R3000; SN/RAM-6000; RAM-9000)

Rules for Packages

Modes of snupdate operation

Unscripted Installation Packages

Scripted Installation Packages

Sample install.sh

Configuration Only Packages (gatherconfigs)

Return Codes

Examples of Common Tasks in Scripted Installs

Check Firmware Version

Rules for Packages

All package names must end in .zip

\usr\lib\

snupdate will only work if the package file is in the /tmp directory
snupdate does not support password protection on user-created packages
It is recommended that users create packages on a unit which makes it easier to ensure that files have the correct paths, permissions,
etc.

Modes of snupdate operation

snupdate has three modes of operation, based on the contents of the zip file it is called upon.

Unscripted Installation Packages

This is the default snupdate behavior. Unless it detects special contents in the zip file, snupdate treats the package as a plain zip file and extracts
the contents with their full paths to the root directory of the device, thus all files should have the full path name when the package is created. This
default behavior provides a simple way to update devices and install new files and programs, but does not provide the flexibility of the scripted
installation method.

Scripted Installation Packages

If snupdate finds a file named install.sh in the root directory of a package, snupdate will treat it as a scripted installation package. This means that
snupdate will only extract the install.sh file to tmp and then run /tmp/install.sh, passing it a single argument of the package file name. The install.sh
script is expected to extract the rest of the contents of the package itself and perform any other operations that the package requires. This method
allows maximum flexibility but adds some complexity that may not be necessary for simple packages. For example, a scripted installation would
be useful for a package that needs to check the current status or configuration of a unit (e.g. the firmware version) and behave differently based
on that information.

Sample install.sh

#!/bin/sh
Check that /etc/version exists. This pretty much only true on JBM/SN
devices
if [! -e "/etc/version"]; then
 echo "Unit does not appear to be a JBM/Sixnet unit, exiting."
 exit 1
fi

The only argument we are passed is the file name of the package
FILE_NAME=$1

Make sure we can find that file before we continue
if [! -e "$FILE_NAME"]; then
 echo "Cannot find package file $FILE_NAME"
 exit 2
fi
Extract the rest of the contents of the package
-d The destination directory for the unpacked contents
-o Overwrite existing files without prompting (use this!)
$FILE_NAME The file name of the package to unzip
-x install.sh Exclude install.sh when extracting since that has
already been unpacked
unzip -d / -o $FILE_NAME -x install.sh

Now that the contents are extracted, we can do any other action the
package needs to perform perl /tmp/xmllib.gmuclient.pl

Configuration Only Packages (gatherconfigs)

If snupdate does not find an install.sh script, but it does find all three of: /home/httpd/jbmconfig/conf/config.xml, /etc/rc.d/rc.local, and /etc/hosts, it
will treat the package as a configuration package created by a gatherconfigs. This provides a fairly simple method to save the configuration of the
unit and to restore that config or transfer it to another unit.

Return Codes

Return codes are multiplied by 256, so a return code of 512 is actually a return code of 2. This is an effect of snupdate.

Examples of Common Tasks in Scripted Installs

Check Firmware Version

bring main version variables into local scope
source /etc/version

if ["$BUILD_MAJORVER" -ne 4]; then
 echo "Package only applies to 4-series devices"
 exit 1
fi
if ["$BUILD_MINORVER" -lt 22]; then
 echo "Package relies on library updates introduced in 4.22"
 exit 1
fi

echo "
Installed on:
Full Version $BUILD_VERSION
RC Version $BUILD_RCVER
"

Package Preservation
Partitions

Package Preserve Automation
Usage

Storage Spaces

During the installation process, if the .zip file needs to be stored in a location that will persist after re-flash, then it needs to go into one of two
places; Storage or Vault. Storage is a smaller partition that was used in older models when the Vault partition did not exist. Its purpose was to
keep a section of memory that would maintain its data across re-flashes. As newer models with more space were introduced, a new version 4.23
was introduced containing a new partition with more memory available. The table below shows the size comparison between the Storage and
Vault partitions.

Partition Size Version Supported

/storage 4 megabytes, 2 MB customer usable 4.22 and below

/vault 16 megabytes 4.23+

/vault/appdata Directory in /vault. Will be cleared if reflashed without saving configs or if Factory Reset is chosen 4.25

Partitions

By executing the "df -h" command, it produces the following result.

Take care when saving data to the file system. A program can open a handle to a file and start writing, but if the handle is not flushed or
closed, the data could be kept in buffers that have not been written to “disk” (for example: /vault). If power off or reboot happens, then
those buffers could be lost.

When writing to a file handle, always flush after writes to ensure data is kept. See Linux documentation on fflush(), fsync(), and
O_SYNC flags for more information.

Filesystem Size Used Available Use% Mounted on
/dev/root 120.0M 31.4M 88.6M 26% /
/dev/mtdblock3 4.0M 1.8M 2.2M 44% /storage
/dev/mtdblock4 3.0M 2.7M 284.0K 91% /boot
tmpfsvar 5.0M 376.0K 4.6M 7% /var
tmpfstmp 80.0M 72.0K 79.9M 0% /tmp
tmpfsvar 32.0K 0 32.0K 0% /media
/dev/mtdblock6 16.0M 692.0K 15.3M 4% /vault
/dev/mtdblock9 253.0M 72.6M 180.4M 29% /images
/dev/mtdblock10 32.0M 1.0M 31.0M 3% /datalog

There are six major partitions that exist on the device. Four of them will have their data persist after re-flash. When installing a package, it is
important to know where to store data that should not be changed, even after a firmware update.

Partition Type Persists
After
Re-flash

Persists after
Advanced
Re-flash

Persists
After
Reboot

Purpose

tmp memory No No No Temporary Storage

var memory No No No Program data during execution

storage mtdblock Yes No Yes Re-flashing tools and saved configs

boot mtdblock No No Yes Kernel

root memory No No Yes Main System information

vault mtdblock Yes Yes Yes Open

images mtdblock Yes Yes Yes Wireless Module Firmware Storage

datalog mtdblock Yes Yes Yes Data Logger records

nvram (Non-Volatile
Random Access Memory)

memory Reads and Writes that can be retentive as long as the battery is
charged. (Only Available on RAM 9000 series)

Based on the table above, the Vault partition is the best place to preserve a package. Its data will be preserved across both re-flash and
advanced re-flash. By saving dynamic information into /vault/appdata, your custom configs can survive a reflash but will be cleared when the
system does a factory reset. If you save your configs in /vault/mycustomdir/ then you will have to manage your own config status.

Package Preserve Automation

Partitions

Temporary Storage Warning
Be careful when installing parts of the program into the tmp directory, as it is removed during re-flash, advanced re-flash, and system
shut down.

User edits to system files are usually not preserved (for example, /etc/crontab). This is intentional.

/opt is not preserved across unit reflashes. Data kept in /opt, and other system changes on the root / partition, must be encapsulated
into your installer. Make sure to preserve your package for re-installation across firmware reflashes (see below).

/vault/appdata will be cleared when a unit is returned to factory defaults. This is a useful area for your custom SDK configs and data that
will be preserved across a firmware reflash. See the section " " for more information.Factory Reset

It is intended that your SDK package will be reinstalled freshly after every firmware reflash. Config changes and other dynamic data should be
saved in /vault/appdata/ to persist reflashes, but still allow the system to clear them with a factory reset.

To ensure that an install package is preserved across re-flashes, the script was created to automate the copying system_package_preserve
of the install package to the correct partition. It will first try to copy it to the Vault partition and it one does not exist (it is an older model), then it will
copy the package to the Storage partition.

Usage

The system_package_preserve requires only one argument. That argument is the name of the package zip file. The format for the script is as
follows.

 "<package_name.zip>" /usr/iog/api/system_package_preserve

An example of using this script for an install package called "install.zip" would be to include the line below in the install.sh script for the package.

/usr/iog/api/system_package_preserve "install.zip"

Running from install.sh, your installer package is the first argument. Run system_package_preserve "$1" to have your application be reinstalled
after a reflash.

GAU Custom Extensions
General Information
Usage
SDK Installation Implementation
Notes
Custom tabs on version 4.23.

General Information

The GAU interface supports the ability to add a link from the main GAU page to custom made pages through the Extensions tab.

If no custom made pages have been added to the customTabs.txt file using the command, then the GAU interface willwebui_extension_add
look like the image below.

After utilizing the command, an "Extensions" tab will be displayed with a drop down list containing all the custom pages aswebui_extension_add
shown below.

Package Persevere Automation will be available in version 4.24 and later

An example how it would look in your install.sh

GAU Custom Extensions will be available in version 4.24 and later.

All of the HTML and Javascript documents for the GAU interface are stored in the directory. The GAU/home/httpd/jbmconfig/html/pages
interface uses Pager.js to take a list of webpage URLs and attach the GAU header and footer to the webpage.

Header

Footer

By using the command, a custom made page entry can be added to the customTabs.txt file. However, if the HTML andwebui_extension_add
Javascript files are not in the pages directory but were added to the customTabs.txt using the webui_extension_add command, the custom page
will not be displayed.

Usage

Usage Format: webui_extension_add [-h | -r | -p | -u | -m] "<Title>" "<URL>"

-h: Displays the usage text and then exits.

Ex. webui_extension_add -h

-r: The <URL> argument will be written to the configuration file without the "#!/" characters. This option should be used if the custom page
will not have the GAU header or footer.

Ex. webui_extension_add -r "Start Page" "start"

Start Page,start

-p: The <URL> argument will be written to the configuration file with the "#!/" characters. This option should be used if the custom page will
have the GAU header and footer.

Ex. webui_extension_add -p "Start Page" "start"

Start Page,#!/start

-u: Deletes the entry in the configuration file containing the <Title> argument.

Ex: webui_extension_add -p "Start Page"

"Start Page,#!/start" will be deleted.

-m: Displays the extended usage statement.

Note: The <Title> and <URL> arguments must be inside of quotes. If no quotes are used, each word spaced out will become it's own argument
and will cause a usage error.

SDK Installation Implementation

The GAU custom extension(s) can be added to the installation process by adding the command(s) to the install.sh file. Using the code from the sn
 page, the webui_extension_add command can be entered after the unzip command as shown in the image below. update

https://redlion.atlassian.net/wiki/spaces/PP/pages/89096501/snupdate
https://redlion.atlassian.net/wiki/spaces/PP/pages/89096501/snupdate

#!/bin/sh
Check that /etc/version exists. This pretty much only true on JBM/SN
devices
if [! -e "/etc/version"]; then
 echo "Unit does not appear to be a JBM/Sixnet unit, exiting."
 exit 1
fi

The only argument we are passed is the file name of the package
FILE_NAME=$1

Make sure we can find that file before we continue
if [! -e "$FILE_NAME"]; then
 echo "Cannot find package file $FILE_NAME"
 exit 2
fi
Extract the rest of the contents of the package
-d The destination directory for the unpacked contents
-o Overwrite existing files without prompting (use this!)
$FILE_NAME The file name of the package to unzip
-x install.sh Exclude install.sh when extracting since that has
already been unpacked
unzip -d / -o $FILE_NAME -x install.sh

NEW ADDITION
Now that the contents are extracted, we can do any other action the
package needs to perform perl /tmp/xmllib.gmuclient.pl
If a custom webpage is to be added to the extensions tab on the GAU
website
then use the webui_extension_add command.
-p The webpage will use the GAU header and footer and will have "#!/"
prepended to it in the customTabs.txt file.
-r The webpage will not use the GAU header and footer
-h This will display the usage message
The command below will add an item called "Page Title" under the
extensions tab
and will link to the page "my_page". This page will use the GAU header
and footer.
webui_extension_add -p "Page Title" "my_page"

Notes

All custom pages listed in the Extensions tab must have an appropriate Javascript file. The bare minimum would look like code below.

Install.sh

1.
2.
3.

4.
5.

define ([], function() {

// Custom Code Here

});

While the code above would allow the custom page would be displayed, the format and style will not match the GAU. To get the full compatibility,
the Javascript file should look more like the code below.

define (["jquery", "knockout"], function ($, ko){

// Custom Code Here

});

Custom tabs on version 4.23.

If you have firmware version 4.23 or would like to manually add a custom tab without command described above, pleasewebui_extension_add
see page.Add Custom Tabs to Navigation

Add Custom Tabs to Navigation

Custom tabs are defined by a csv file on-device. With this file populated, entries will show up in order under the tab , following Custom Advanced
on the main navigation bar.

Update via the GUI

Navigate to > > through the GUIAdvanced Expert Mode Configure Sub-systems
Select from the drop-downCustom Tabs
Add a line to the csv file similarly to the commented examples

Use a pound-sign (#) at the beginning of a line to remove (comment-out) an entry
Click Save
Observe that your tab appears under the new entry on the navigation barCustom

Update via Script

You can modify the custom tabs configuration file with a script. The following snippet will add or update an entry in the main configuration file

myPage.js

myBetterPage.js

Please Note
This page is for adding custom tabs to navigation on firmware 4.23. If you have version 4.24 and above, you may also use this method,
if desired, but it is recommended to use command described on page.webui_extension_add GAU Custom Extensions

https://redlion.atlassian.net/wiki/spaces/PP/pages/57540709/Add+Custom+Tabs+to+Navigation
https://redlion.atlassian.net/wiki/spaces/PP/pages/91422813/GAU+Custom+Extensions

PAGE_TITLE="My Custom Tab" # This will be the text of the tab

PAGE_URL="mypage" # If your custom page contains an
index.html
PAGE_URL="mypage/not_index.html" # If your custom page does not
contain an index.html
PAGE_URL='#!/start' # Link to existing page, note use
of single-quotes (! is a special character)
PAGE_URL="http://www.redlion.net/" # External URL

TABSFILE="/home/httpd/jbmconfig/txt/customTabs.txt"

See if the entry already exists
if ! grep "^${PAGE_TITLE}," $TABSFILE &>/dev/null; then
 # If not, append it to the list
 echo "${PAGE_TITLE}, ${PAGE_URL}" >> $TABSFILE
else
 # Otherwise, update it
 PAGE_URL="${PAGE_URL//\//\\/}" # escape any forward-slashes for the
next command
 sed -i "s/^${PAGE_TITLE},.*$/${PAGE_TITLE}, ${PAGE_URL}/" $TABSFILE
fi

Note: If installing your own files, they must exist in a subdirectory of /home/httpd/jbmconfig/html. E.g.

/home/httpd/jbmconfig/html/mypage/
/home/httpd/jbmconfig/html/mypage/index.html
/home/httpd/jbmconfig/html/mypage/styles.css

After any changes are made, refresh the GUI page.

Install using a .zip package

This is how you would install a web page with your SDK package. First make sure all necessary files for your site are descendants of a single
folder. E.g.

$ unzip -l mypackage.zip
install.sh
home/
home/httpd/
home/httpd/jbmconfig/
home/httpd/jbmconfig/html/
home/httpd/jbmconfig/html/mypage/
home/httpd/jbmconfig/html/mypage/index.html
home/httpd/jbmconfig/html/mypage/mystyle.css
home/httpd/jbmconfig/html/mypage/myjavascript.js

Note: the path " " is critical. Your folder "mypage" needs to extract here for the device to be able to serve it. Yourhome/httpd/jbmconfig/html
SDK binaries can extract to the standard path.

This sample install.sh would install your package and create a tab in the GUI

#!/bin/bash

This is the text for the button that will appear in the main
navigation drop-down
PAGE_TITLE="My Page"

This is the name of the directory containing your files
(relative to the "html" directory in your package, e.g.
home/httpd/jbmconfig/html/mypage)
PAGE_URL="mypage"

You should not need to touch anything below this line

ZIP_FILE="$1"
unzip -o "$ZIP_FILE" -x install.sh -d /

This adds your page title to our list of custom URL's (but only if it
hasn't already)
if ! grep "^${PAGE_TITLE}" "/home/httpd/jbmconfig/txt/customTabs.txt"
&>/dev/null; then
 echo "${PAGE_TITLE}, ${PAGE_URL}" >>
"/home/httpd/jbmconfig/txt/customTabs.txt"
fi

You can then install through the GUI, and the tab should appear after a refresh.mypackage.zip Custom

Web UI Integration
This page details setting up your own interface to be served by our web server.

Quick Start
Server Root

Example
CGI

Example
Integration

Extensions Tab
Examples

AMD Integrated Page
Independent Page

Pager JS AMD Integration
Appendix

install.sh
webui_extension_add

File Locations
Pager JS Integration
GauWeb API

GauWeb.ifconfig
GauWeb.ifconfig.[interface]
GauWeb.ifconfig.cell
GauWeb.ifconfig.refresh(callback)

GauWeb.ui
GauWeb.ui.loader.show
GauWeb.ui.loader.hide

Quick Start

Use this if you already have your page well defined, and just want to drop in your files

Server Root

Place files here to have them available via direct URL

/home/httpd/jbmconfig/html/

Example

/home/httpd/jbmconfig/html/sdk/mypage.html

Will be available at

http://1.2.3.4:10000/sdk/mypage.html

CGI

For system level access to the device, you can put scripts in this folder:

/home/httpd/jbmconfig/cgi-bin

And you can then query them from your html/javascript.

Example

/home/httpd/jbmconfig/cgi-bin/mycgi.cgi

Can be hit via this jquery call:

$.post("cgi-bin/mycgi.cgi")

Integration

For more seamless integration with our primary Web UI, you can include a link to your page from our UI and even load your page using our
javascript framework to gain our header, footer, and access to our jquery, knockout and GauWeb libraries

Extensions Tab

This tab is populated from an on-device configuration. navigate to > > To manually add your page, Advanced Expert Mode Configure
 in our Web UI and edit the file. There are examples included.Sub-systems Custom Extensions Tab

You can also do this automatically during package installation

Examples

AMD Integrated Page

Add the following to your install.sh for a link to your integrated page:

/usr/iog/api/webui_extension_add -p "My Page" "mypage"

As long as your package contains these files:

/home/httpd/jbmconfig/html/pages/mypage.html
/home/httpd/jbmconfig/html/pages/mypage.js

Your page will appear in our Extensions drop down with a link named pointing to (relative to yourMy Page http://1.2.3.4:10000/#!/mypage
access method and device IP). See the appendix for more information

Independent Page

For a link to your fully independent page that does not use our pager js infrastructure, add the following to your install.sh for a direct URL:

/usr/iog/api/webui_extension_add "My Page" "sdk/mypage.html"

And as long as your package includes , a link with the label will appear in our/home/httpd/jbmconfig/html/sdk/mypage.html My Page
extensions drop down.

Pager JS AMD Integration

Our primary Web UI uses pagerjs and requirejs for Asynchronous Module loading of content.

If you use with the " " flag to include your page, you can use our javascript infrastructure by accessing your page via anwebui_extension_add -p
#!/mypage URL. This gives your page easy access to our jquery/knockout and custom GauWeb libraries. See in thePager JS Integration
appendix for sample html/js files.

Appendix

install.sh

Functions to use in install.sh for package installation

webui_extension_add

Add your page to the Extensions drop-down tab. Usage:

/usr/iog/api/webui_extension_add [-p|-r] <Title> [URL]

-r (default) Inject raw URL (path/to/mypage.html

-p Use pagerjs URL (#!/mypage)

Title The label for your link in the drop-down

URL (optional, defaults to Title) URL link will point to. Potentially prepended by flag-p

File Locations

Path Description

/home/httpd/jbmconfig/html Server root. Places files here for access via direct URL

/home/httpd/jbmconfig/html/pages PagerJS root. Place mypage.html and mypage.js here for access via AMD/PagerJS

/home/httpd/jbmconfig/cgi-bin Path to on-device cgi scripts. Accessible via REST request at <host>:10000/cgi-bin/

Pager JS Integration

Expand on these files to integrate with our Pager JS infrastructure (remember, no html/head/body tags necessary)

/home/httpd/jbmconfig/html/pages/mypage.html:
<input type="text" data-bind="value: myinput"></input>
<button data-bind="click: randomize">Generate Random Number</button>

/home/httpd/jbmconfig/html/pages/mypage.js:
define(["jquery", "knockout", "GauWeb"], function ($, ko, GauWeb),
function () {return new function () {
 var self = this
 self.myinput = ko.observable("default value")
 self.randomize = function () {
 self.myinput(Math.random())
 }
}})

GauWeb API

These functions are available in your page javascript if you load your page via our Pager JS infrastructure and include "GauWeb" in your module's
definition (see Pager JS Integration example above)

GauWeb.ifconfig

Available since version 4.22

Contains information about active network interfaces

GauWeb.ifconfig.[interface]

Available interfaces: eth0, eth1, ppp0, usb0, wlan0, wwan0.

For each interface, the following attributes are available as :knockout observables

hwaddr Hardware MAC Address

ipaddr IPv4 Address

ip6addr IPv6 Address

bcast ipv4 Broadcast Address

mask ipv4 Netmask

state link state: UP or DOWN

To get the value, call the attribute as a function. (for more information, see knockoutjs documentation for observables)

GauWeb.ifconfig.eth0.ipaddr();
// returns "192.168.0.1"

Ensure you have called a refresh, as below, before trying to get the value of any attribute

GauWeb.ifconfig.cell

This is a special interface that assumes the attributes above for either wwan0 or ppp0, depending on which interface is active.

Additionally, will return or based on which interface is active.GauWeb.ifconfig.cell.active() wwan0 ppp0

GauWeb.ifconfig.refresh(callback)

Refresh the data in the ifconfig module. Callback is a function to be run after the device has responded. Example:

GauWeb.ifconfig.refresh(function () {
 console.log("Everything up-to-date!");
});

GauWeb.ui

Functions to produce visible modals and promote user interaction

Available since version 4.24

GauWeb.ui.loader.show

This will make a loading modal appear with spinner gif. Optionally, call with a string argument to show a custom message.

GauWeb.ui.loader.hide

Hide the modal.

Available since version 4.24

xfglib - multi-subsystem xml configurator

SYNOPSIS
Quick jbm_xmllib.pl Conversion

FUNCTIONS
xfg_set_attribute
xfg_set_multi_attribute
xfg_table_append
xfg_table_clear
xfg_clear
xfg_commit

SYNOPSIS

callback is . Since all ifconfig interface attributes are knockout observables, any subscribers will automatically be notified ifoptional
their values change. See knockoutjs documentation for more information.

The loader maintains a stack. For every instance of "loader.show" there must be an instance of "loader.hide." This allows nested CGI
calls to show/hide their own loader without making the loader disappear prematurely. This effectively changes the loader message
based on the current action.

require "/etc/jbm/xfglib.pl";

This script is a replacement for jbm_xmllib.pl that supports multiple-subsystem operations.

Build up a configuration in memory with repeated calls to "xfg_set_attribute"

&xfg_set_attribute($subsystem, $attribute, $value);

Each set with a matching $subsystem will apply the attribute to that subsystem's list of attributes

You can also specify multiple attributes in a hash with "xfg_set_multi_attribute"

 my %xml_settings = (
 dns1 => "8.8.8.8",
 eth1_enable => "Yes"
);
&xfg_set_multi_attribute("dhcpserver", \%xml_settings);

This invocation mimics jbm_xmllib.pl

Note: "action" does not need to be specified here. One action will apply to all changes at the end.

After you have added configuration options for all your subsystems, run the following with a standard action to commit the change

&xfg_commit($action [, 1]);

Note: This will CLEAR all previously set configurations unless a second argument of 1 or "truthy" is passed in to preserve the in-memory config
map

Quick jbm_xmllib.pl Conversion

Previous implementation using jbm_xmllib.pl - to migratecfg3 calls

1.
2.
3.

 my %xml_settings = (
 action => "apply",
 dns1 => "8.8.8.8",
 eth1_enable => "Yes"
);
&xmlcfg_dhcpserver(\%xml_settings);

%xml_settings = (
 action => "apply",
 enable => "y"
);
&xmlcfg_firewall(\%xml_settings);

%xml_settings = (
 action => "apply",
 intfs => "eth0,usb0"
);
&xmlcfg_firewall_trustedintfs_add(\%xml_settings);

Implement using xfglib.pl - to migratecfg1 call

my %xml_settings = (
 dns1 => "8.8.8.8",
 eth1_enable => "Yes"
);
 &xfg_set_multi_attribute("dhcpserver", \%xml_settings);

&xfg_set_attribute("firewall", "enable", 'y');

&xfg_table_append("firewall", "trustedintf", {intf => eth0});
&xfg_table_append("firewall", "trustedintf", {intf => usb0});

&xfg_commit("apply");

FUNCTIONS

xfg_set_attribute

Arguments

$subsystem - string containing subsystem name
$attribute - string attribute name
$value - string for attribute value

Description

1.
2.

1.
2.
3.

1.

2.

Set the value of subsystem attribute in memory. New compared to jbm_xmllib.pl, this is used for one-off sets for the attribute of a subsystem. It is
the backbone for the "xfg_set_multi_attribute" subroutine.

xfg_set_multi_attribute

Arguments

$subsystem - string containing subsystem name
\%attributes - hash reference of attribute:value pairs

Description

For each attribute in the %attributes hash reference, set an associated value for subsystem

This is designed to mimic jbm_xmllib.pl's method of setting configurations

jbm_xmllib.pl:
$ret = &xmlcfg_dhcpserver(\%xml_settings);

xfglib.pl:
$ret = &xfg_set_multi_attribute("dhcpserver", \%xml_settings);

The same has structure of attribute:value, with exception of "action," is used to make direct conversions more straightforward. Action is specified
in the call to "xfg_commit"

xfg_table_append

Arguments

$subsystem - string containing subsystem name
$tablename - string containing name of table
$tablehash - hash reference containing attribute:value pairs

Description

Set the value of subsystem attribute in memory. New compared to jbm_xmllib.pl, Similar to "xfg_set_multi_attribute", except the hash reference
contains all attributes pertaining to a specific table record. This also mimics jbm_xmllib.pl usage:

jbm_xmllib.pl:
&xmlcfg_firewall_trustedintfs_add(\%xml_settings);

xfglib.pl:
xfglib: &xfg_table_append("firewall", "trustedintf", \%xml_settings);

xfg_table_clear

Arguments

$subsystem - string containing subsystem name

2.

1.
2.

$tablename - string containing name of table

Description

This is used to explicitly clear a table in config.xml. Tables are replaced in whole chunks, so a clear is performed by replacing the list of records
with an empty list.

xfg_clear

Description

Clear all in-memory configurations. This is used at the end of an "xfg_commit" to clear the slate for future configurationsby default

xfg_commit

Arguments

$action - action string passed to migratecfg. E.g. "apply", "saveall", "cfgonly"
$preserve - (optional) call with a "1" as the second argument to preserve the in-memory set of configurations

Description

This is the main make-configuration-happen subroutine. New compared to jbm_xmllib.pl, this is the only subroutine that actually modifies
config.xml. All other functions manage an in-memory set of configurations, "xfg_commit" is called once at the end to apply the configurations all at
once.

Example Walkthrough

Please see: XFGLib User Guide

Use this if calling routine is a daemon that will want to repeatedly apply the same or similar set of configurations

https://redlion.atlassian.net/wiki/spaces/PP/pages/92668092/XFGLib+User+Guide

	SN SDK Setup And Installation
	SN-SDK User Guide
	SN SDK IODB Library Reference
	SDK How-To's
	XFGLib User Guide
	Controlling Cellular Connection
	Lighttpd testing

	SMS Messages
	Sending Emails
	System Statistics
	Getting GPS data from the Device
	AT Command Interface

	Include Libraries
	snupdate
	Package Preservation
	GAU Custom Extensions
	Add Custom Tabs to Navigation

	Web UI Integration
	xfglib - multi-subsystem xml configurator

